Contents

Fο	rev	VΛI	'n	L

Symbols and Indices XIII

1	Terms and Definitions 1
1.1	Time behavior of the short circuit current 3
1.2	Short circuit path in the positive-sequence system 4
1.3	Classification of short circuit types 5
1.4	Methods of short circuit calculation 7
1.4.1	Equivalent voltage source 7
1.4.2	Superposition method 9
1.4.3	Transient calculation 10
1.5	Calculating with reference variables 10
2	General Information About IEC 60 909 11
3	The Significance of IEC 60 909 13
4	Supply Networks 17
4.1	Calculation variables for supply networks 17
4.2	Lines supplied from a single source 17
4.3	Radial networks 18
4.4	Ring networks 18
4.5	Meshed networks 19
5	Network Types for the Calculation of Short Circuit Currents 21
5.1	Low voltage network types 21
5.2	Medium voltage network types 23
6	Systems up to 1 kV 29
6.1	TN systems 29
6.2	Calculation of fault currents 31
6.3	TT systems 34

хĮ	Contents	
•	6.4	IT systems 35
	6.5	Transformation of the network types described to equivalent circuit
		diagrams 36
	7	Neutral Point Treatment in Three-phase Networks 39
	7.1	Networks with isolated free neutral point 42
	7.2	Networks with grounding compensation 43
	7.3	Networks with low impedance neutral point treatment 44
	8	Impedances of Three-phase Operational Equipment 47
	8.1	Network feed-ins 47
	8.2	Synchronous machines 49
	8.3	Transformers 51
	8.3.1	Short circuit current on the secondary side 52
	8.3.2	Voltage regulating transformers 57
	8.4	Cables and overhead lines 58
	8.5	Short circuit current limiting 70
	8.6	Asynchronous machines 71
	8.7	Consideration of capacitors and non-rotating loads 72
	8.8	Consideration of static converters 73
	9	Impedance Corrections 75
	9.1	Correction factor K_G for generators 76
	9.2	Correction factor K _{KW} for power plant block 77
	9.3	Correction factor K _T for transformers with two and three windings 79
		8
	10	The Method of Symmetrical Components 81
	10.1	Symmetrical components 82
	10.2	Impedances of symmetrical components 85
	11	Calculation of Short Circuit Currents 91
	11.1	Three-pole short circuits 91
	11.2	Two-pole short circuits with contact to ground 93
	11.3	Two-pole short circuit without contact to ground 93
	11.4	Single-pole short circuits to ground 94
	11.5	Peak short circuit current i _p 97
	11.6	Symmetrical breaking current I _a 99
	11.7	Steady state short circuit current I _k 102
	12	Motors in three-phase Networks 105
	12.1	Short circuits at the terminals of asynchronous motors 105
	12.2	Motor groups supplied from transformers with two windings 107
	12.3:	Motor groups supplied from transformers with different nominal voltages 107

13	Mechanical and Thermal Short Circuit Strength 111
13.1	Mechanical short circuit current strength 111
13.2	Thermal short circuit current strength 112
13.3	Limitation of short circuit currents 120
14	Calculations for Short Circuit Strength 127
14.1	Short circuit strength for medium voltage switchgear 127
14.2	Short circuit strength for low voltage switchgear 128
15	Equipment for Overcurrent Protection 131
16	Short Circuit Currents in DC Systems 143
16.1	Resistances of line sections 145
16.2	Current converters 146
16.3	Batteries 147
16.4	Capacitors 148
16.5	DC motors 149
17	Programs for the Calculation of Short Circuit Currents 151
18	Examples: Calculation of Short Circuit Currents 153
18.1	Example 1: Radial network 153
18.2	Example 2: Proof of protective measures 155
18.3	Example 3: Connection box to service panel 158
18.4	Example 4: Transformers in parallel 159
18.5	Example 5: Connection of a motor 160
18.6	Example 6: Calculation for a load circuit 162
18.7	Example 7: Calculation for an industrial system 164
18.8	Example 8: Calculation of three-pole short circuit current and peak short circuit current 166
18.9	Example 9: Meshed network 168
18.10	Example 10: Supply to a factory 171
18.11	Example 11: Calculation with impedance corrections 172
18.12	Example 12: Connection of a transformer through an external network and a generator 176
18.13	Example 13: Motors in parallel and their contributions to the short circuit current 177
18.14	Example 14: Proof of the stability of low voltage systems 180
18.15	Example 15: Proof of the stability of medium and high voltage systems 182
18.16	Example 16: Calculation for short circuit currents with impedance corrections 193
18.17	Example 17: Calculation with per-unit magnitudes 195

KII	Contents

Appendices	
Calculation Tools for Electrical Engineering	197

- 1 The Elaplan program 199
- 2 The KUBS plus Program 251

Index 261