CONTENTS

SOME SII	MPLE REMARKS ON THE BASIS OF TRANSPORT ST	[R I	₹.	PETERLS
I.	Introduction			2
II.	The most naive transport problem			2
III.	Angle dependent scattering; many collision time	s		8
IV.	A still more general transport collision time			10
٧.	How valid is the Boltzmann equation?			12
VI.	The situation is better than it seems			14
VII.	There are still reservations			17
VIII.	Pauli's remark and off-diagonal elements			18
IX.	Summary of limits of validity			20
X.	Extension to many-body problem			20
XI.	Neglect of correlations			21
XII.	Conservation laws			22
XIII.	Limit on collision rate			23
XIV.	Omission of off-diagonal terms. Rigorous derive	utio	ons	3 24
xv.	Illustrations. Lattice thermal conductivity			26
XVI.	Content of Boltzmann equation			27
XVII.	Exponential Behaviour			29
XAIII.	The use of modern methods			30
XIX.	Conclusions			32
	References			33
ENTROPY,	DYNAMICS AND SCATTERING THEORY			RIGOGINE LYN E
I.	Introduction			35
· II.	The Mac Kean model			36
III.	Irreversibility as a symmetry breaking			41
IV.	Star unitary transformation			45
v.	Construction of the Λ - transformation			49
VI.	Potential scattering			57
VII.	Concluding remarks			71

73

References

RESPONSI	E, RELAXATION AND FLUCTUATION	R. KUBO
I.	Introduction	75
II.	Classical Brownian motion and its generalizations	76
III.	Rice's method (harmonic analysis)	79
IV.	Direct integration, path integral representation	80
V.	Stochastic Liouville equation	85
VI.	Retarded friction, fluctuation-dissipation theorems	87
VII.	Force correlations	93
VIII.	Some examples	97
IX.	Some comments	105
X.	Damping-theoretical method	113
XI.	Concluding remarks	119
	Notes and references	122
	TING HYDRODYNAMICS AND RENORMALIZATION OF IBILITIES AND TRANSPORT COEFFICIENTS	P. MAZUR
I.	General introduction	126
II.	On the critical behaviour of the dielectric constant for a non-polar fluid	t 130
III.	Renormalization of the diffusion coefficient in a fluctuating fluid	144
	References	154
IRREVERS	SIBILITY OF THE TRANSPORT EQUATIONS	J. BIEL
I.	Introduction	156
II.	General remarks on irreversibility	158
III.	The irreversibility of the Boltzmann transport equation	171
IV.	The irreversibility of other equations	191
	References	201
ERGODIC	THEORY AND STATISTICAL MECHANICS J. L.	IEBOWITZ
I.	Introduction	203
II.	Ergodicity and ensemble densities	207
III.	Systems of oscillators and the Kam theorem	213
IV.	Mixing	216
v.	K- and Bernoulli systems	223
VI.	Ergodic properties and spectrum of the induced unitary transformation	230
VII.	Infinite systems	231
	References	234

CORRELAT	ION FUNCTIONS IN REISENBERG MAGNETS M. DE LEENE	R		
I.	Introduction 23	8		
II.	Neutron scattering experiments and spin correlation functions	-3		
III.	Some general properties of the spin correlation 24 functions	-8		
IV.	Low temperature theory 25	1		
٧.	High temperature theory 26	1		
VI.	The critical region 27	4		
	References 28	17		
	NSKOG HARD-SPHERE KINETIC EQUATION AND M. G. VELARI SPORT PHENOMENA OF DENSE SIMPLE GASES	Œ		
I.	Introduction: The hard-sphere model interaction 28	39		
II.	From the Boltzmann approach to the Enskog equation 29)4		
III.	Hydrodynamic equations and the (new Enskog) collisional (or potential) transfer	Ю		
IV.	Solution of the Enskog equation for practical purposes 30	15		
٧.	Transport coefficients from the Enskog equation 33	0.		
٧ı.	Comparison with experimental data 31	.6		
VII.	The square-well fluid 32	?7		
VIII.	Final comments 33	0		
	References 33	6		
WHAT CAN	ONE LEARN FROM LORENTZ MODELS? E. H. HAUG	E		
I.	Models 33	8		
II.	From kinetic theory to hydrodynamics 34	0		
III.	Higher density effects 34	.9		
IV.	Rigorous results 36	,2		
	References 36	6		
CONDUCTIVITY IN A MAGNETIC FIELD R. B. STINCHCOMBE				
I.	Introduction 36	9		
II.	Derivation of the Boltzmann equation in a magnetic field	6		
III.	Solution of the Boltzmann equation 38	7		
IV.	Quantum effects 39	5		
٧.	Collisions between carriers 40	1		
VI.	Collisions with phonons 40	5		
VII.	Concluding remarks 41	1		
	References 41	.2		

TRANSPORT EXTERNAL	F PROPERTIES IN GASES IN THE PRESENCE OF J. BEEN. FIELDS	AKKER
I.	Introduction	414
II.	The non-equilibrium polarizations	426
III.	The limitation of the one moment description	441
IV.	The effective cross sections and their behaviour	449
٧.	Field effects in the rarefied gas regime	456
	References	466
	PROPERTIES OF DILUTE GASES WITH R. F. SI STRUCTURE	NIDER
I.	Introduction	470
II.	The role of free molecular motion	472
III.	Field dependence of the viscosity	479
IV.	On the Boltzmann equation for molecules with internal structure	496
v.	Collision integrals of the linearized W-S equation	505
	References	516