Contents

Preface *xiii* **About the Editors** *xv*

Part I Atroposelective Synthesis 1

1	Introduction 3	
	Mohamed S. H. Salem and Shinobu Takizawa	
1.1	Molecular Chirality and Atropisomerism 3	
1.1.1	Molecular Chirality 3	
1.1.2	Axial Chirality and Atropisomerism 4	
1.2	Atropisomerism in Asymmetric Organic Synthesis 6	
1.3	Atropisomerism: Challenges and Applications 10	
1.3.1	Axially Chiral Ligands and Organocatalysts 10	
1.3.2	Natural Product Synthesis 13	
1.3.3	Atropisomerism in Drug Discovery and Development 13	
	References 16	
2	Iron- and Ruthenium-Catalyzed Atroposelective Synthesis of	
	Axially Chiral Compounds 21	
	Tatsuya Uchida	
2.1	Introduction 21	
2.2	Oxidative Homo-coupling of 2-Naphthols to BINOL and Its	
	Derivatives 22	
2.3	Oxidative Cross-coupling of 2-Naphthols to Asymmetric BINOLs	29
2.4	Oxidative Spirocyclization of 2-Naphthols 38	
2.5	Conclusion 41	
	References 42	

3	Vanadium-Catalyzed Atroposelective Coupling of Arenols and		
	Application in the Synthesis of Polycyclic Heteroaromatics (PHAs) 45		
3.1	Introduction 45		
3.2	Chiral Vanadium Catalysis in Homo-Coupling of		
	Hydroxycarbazoles 47		
3.3	Chiral Vanadium Catalysis in Hetero-Coupling of Hydroxycarbazole with 2-Naphthols 50		
3.4	Enantioselective Synthesis of Oxa[9]helicenes via Chiral Vanadium		
	Complex-Catalyzed Homo-Couplings of Polycyclic Phenols 55		
3.5	Enantioselective Synthesis of Oxaza[7]dehydrohelicenes via Chiral		
	Vanadium Complex-Catalyzed Hetero-Couplings of		
	3-Hydroxycarbazoles and 2-Naphthols 58		
3.6	Summary and Conclusion 62		
	References 63		
4	Atroposelective Suzuki-Miyaura Coupling Toward Axially		
	Chiral Biaryls: Mechanistic Insight 69		
	Toshinobu Korenaga		
4.1	Introduction 69		
4.2	Mechanism Insight of SMC Reaction and Enantiodetermining		
	Step 70		
4.3	Asymmetric SMC Reaction 72		
4.3.1	Examples of Early Studies 72		
4.3.2	Consideration of the Asymmetric SMC: Cases Dependent on a Directing		
	Group 74		
4.3.3	Consideration of the Asymmetric SMC: Cases Independent of a		
	Directing Group 79		
4.4	Conclusion 85		
	References 85		
5	Organocatalytic Enantioselective Formation of		
	Atropisomers 91		
	Chiara Portolani, Giovanni Centonze, and Giorgio Bencivenni		
5.1	Introduction 91		
5.2	Aminocatalysis 92		
5.2.1	Atropisomeric Synthesis of C—C Biaryls via Aminocatalysis 92		
5.2.2	Atropisomeric Synthesis of C—C Non-biaryls via Aminocatalysis 94		
5.2.3	Atropisomeric Synthesis of C—N Scaffolds via Aminocatalysis 97		
5.3	Brønsted Base Catalysis 99		
5.3.1	Atropisomeric Synthesis of C—C Biaryls and Heterobiaryls via Base		
	Catalysis 100		
5.3.2	Atropisomeric Synthesis of C—C Non-biaryls via Base Catalysis 105		

ı

5.3.3	Atropisomeric Synthesis of C—N Scaffolds via Base Catalysis 106
5.3.4	Atropisomeric Synthesis of N—N Scaffolds via Base Catalysis 111
5.4	Phase Transfer Catalysis 112
5.4.1	Atropisomeric Synthesis of C—C Biaryls, Heterobiaryls, and Non-biaryls via PTC 113
5.4.2	Atropisomeric Synthesis of C—N Scaffolds via PTC 117
5.4.3	Atropisomeric Synthesis of C—O Scaffolds via PTC 118
5.4.4	Atropisomeric Synthesis of N—N Scaffolds via PTC 118
5.5	Chiral Phosphoric Acids 120
5.5.1	Atropisomeric Synthesis of C—C Biaryls and Heterobiaryls via CPA 123
5.5.2	Atropisomeric Synthesis of C—N Scaffolds via CPA 124
5.5.3	Atropisomeric Synthesis of C—O Scaffolds via CPA 128
5.5.4	Atropisomeric Synthesis of C—B Scaffolds via CPA 130
5.5.5	Atropisomeric Synthesis of N—N Scaffolds via CPA 130
5.6	Conclusions 131
	References 132
6	Synthesis of Atropisomers <i>via</i> Enantioselective Ring-Opening Reactions 137
	Longhui Duan and Zhenhua Gu
6.1	Introduction 137
6.2	Asymmetric Ring Opening of Biaryl Lactones and Their
	Derivatives 137
6.2.1	Preliminary Findings 137
6.2.2	Catalytic Asymmetric Reactions 139
6.3	Asymmetric Ring-Opening Reactions via C—I Bond Cleavage 145
6.4	Asymmetric Ring-Opening Reactions <i>via</i> C—N and C—P Bonds Cleavage 153
6.5	Asymmetric Ring-Opening Reactions <i>via</i> C—C and C—Si Bond Cleavage 155
6.6	Asymmetric Ring-Opening Reactions <i>via</i> C—O and C—S Bond Cleavage 159
6.7	Oriented Asymmetric Ring Opening <i>via</i> Transient Pentacyclic Metal Species 162
6.8	Summary and Conclusions 164 References 164
	Part II Challenges and Applications 171
7	Axially Chiral Ligands and Catalysts Derived from Atropisomeric Binaphthyl Structures 173 Shouyi Cen and Zhipeng Zhang
7.1	Introduction 173
7.2	Chiral Ligands Derived from BINOLs 174

7.2.1	Phosphorus-Containing Ligands 174
7.2.2	Rare Earth-Alkali Metal-BINOL (REMB) Complexes and Linked
	BINOLs 177
7.2.3	BINOL-Derived Salen Ligands 178
7.2.4	Sulfur-Containing Ligands 178
7.2.5	Oxazoline-Containing Ligands 179
7.2.6	Vanadium Complexes for Enantioselective Oxidative Coupling of
	Phenols 179
7.2.7	Binaphthyl-Based Chiral Diene Ligands and Cyclopentadienyl
	Ligands 180
7.2.8	Binaphthyl-Based Monocarboxylic Acid Ligands 182
7.2.9	Axially Chiral Ligands and Catalysts Containing a Phenanthroline or
	Pyridine Unit 183
7.3	Chiral Ligands Derived from BINAMs 185
7.4	Chiral Ligands Derived from NOBINs 187
7.5	Chiral Organocatalysts Derived from BINOLs 189
7.5.1	Acid Organocatalysts Derived from BINOLs 189
7.5.2	Base Organocatalysts Derived from BINOLs 192
7.5.3	Phase-Transfer, Cation-Bonding, and Ammonium Betaine
	Catalysts 194
7.5.4	Chiral Ketone and Aldehyde Organocatalysts Derived from
	BINOLs 194
7.5.5	BINOL-Derived Catalysts for Hypervalent Iodine
	Organocatalysis 196
7.6	Chiral Organocatalysts Derived from BINAMs 197
7.7	Chiral Organocatalysts Derived from NOBINs 199
7.8	Chiral Ligands and Catalysts Derived from Other Binaphthyl
	Motifs 199
7.9	Summary and Outlook 201
	References 202
8	Multinuclear Zinc Catalysts with Axial Chirality 219
	Takayoshi Arai
8.1	Pioneering Works on BINOL-Zn System 219
8.2	Enantioselective Addition Reaction of Dialkylzinc to Aldehydes Using
	BINOL Additive 219
8.3	Catalytic Asymmetric Alkynylation of Aldehydes 223
8.4	Catalytic Asymmetric Diels-Alder Reaction 224
8.5	Catalytic Asymmetric Epoxidation of Enones 225
8.6	Catalytic Asymmetric Direct Aldol Reaction 226
8.7	Catalytic Asymmetric Iodofunctionalization of Alkenes 230
8.8	Conclusions 233
	References 233

9	Binaphthyl-Based Chiral DMAP Derivatives in
	Enantioselective Transformations 237
	Hiroki Mandai and Seiji Suga
9.1	Introduction 237
9.2	Binaphthyl-Based Chiral DMAP Derivatives 240
9.2.1	Catalyst Design 240
9.2.2	Catalyst Synthesis 241
9.3	Intramolecular Acyl Transfer Reactions 242
9.3.1	O- to C-Acyl Transfer Reaction 242
9.4	Intermolecular Acyl Transfer Reactions 247
9.4.1	Kinetic Resolution of Alcohols 247
9.4.2	Desymmetrization of Alcohols 253
9.4.3	Dynamic Kinetic Resolution 258
9.5	Summary and Conclusions 260
	References 261
10	Catalytic Atroposelective Oxidative Coupling in Natural
	Product Synthesis 267
	Houng Kang and Marisa C. Kozlowski
10.1	Introduction 267
10.2	Copper-Catalyzed Asymmetric Oxidative Coupling to Construct a Chira
	Axis 273
10.2.1	Nigerone 273
10.2.2	Perylenequinones 276
10.2.3	Bisoranjidiol 282
10.3	Vanadium-Catalyzed Asymmetric Oxidative Coupling to Construct a
	Chiral Axis 283
10.3.1	Viriditoxin 283
10.3.2	Sorazolon E2 288
10.3.3	Chaetoglobin A 288
10.3.4	Gonytolide A 291
10.4	Enzymatic Strategies to Synthesize Natural Products <i>via</i> Atroposelective Coupling 295
10.4.1	Kotanin 295
10.4.2	Phlegmacins 297
10.5	Conclusion 297
	References 298
11	Atropisomerism in Drug Discovery and Development 309
	Khaled M. Darwish, Asmaa S. A. Yassen, Ebtehal M. Husseiny,
	Mohammed I. A. Hamed, and Mohamed A. Helal
11.1	Introduction 309
11.2	Configuration Assignment of Atropisomeric Drugs 309

1	
11.3	Classification of Atropisomeric Drugs According to the Rotational
	Energy Barrier 310
11.4	Analysis of Atropisomeric Drugs Across the Pharmaceutical
	Market 311
11.4.1	Biaryls and Heterobiaryls 312
11.4.2	Diaryl Ethers 316
11.4.3	Diaryl Amines 317
11.4.4	Benzamides 318
11.4.5	Macrocycles 319
11.5	Introducing Atroisomerism to Modulate Selectivity 320
11.6	Challenges for Atropisomerism within Drug Discovery 323
11.7	Conclusion 326
	References 326

Index 331