Contents

Foreword — V

Preface — VII

Book overview — XXXIX

About the author —— XLIII

Chapter 1

Embarking	on crop nutrition journey —— 1
1.1	Introduction —— 1
1.2	Soil fertility and soil productivity —— 5
1.2.1	Relationship between soil fertility and soil productivity —— 5
1.3	Crop nutrition — 7
1.3.1	Ingestion (nutrient uptake) —— 8
1.3.2	Digestion (nutrient conversion and mobilization) —— 9
1.3.3	Assimilation (incorporation into plant biomass) —— 9
1.4	The role of crop nutrition in modern agriculture —— 10
1.5	Key concerns with chemical fertilizers —— 12
1.6	The role of crop nutrition in sustainable agriculture —— 13
1.7	Sustainable nutrient management practices —— 16
1.7.1	Precision agriculture techniques — 16
1.7.2	Improved fertilizer application methods —— 17
1.7.3	The 4Rs of nutrient management —— 17
1.7.4	Nutrient management plans —— 19
1.8	Relationship of crop nutrition management with UN SDGs —— 20
1.8.1	SDG 2: Zero Hunger —— 21
1.8.2	SDG 3: Good Health and Well-being —— 21
1.8.3	SDG 6: Clean Water and Sanitation —— 21
1.8.4	SDG 12: Responsible Consumption and Production —— 21
1.8.5	SDG 13: Climate Action —— 22
1.8.6	SDG 15: Life on Land —— 22
1.9	Climate change —— 22
1.9.1	Crop nutrient requirements in changing climates —— 23
1.9.2	Strategies for improvement in crop nutrition in changing climates —— 23
1.10	Food security —— 25
1.10.1	The role of crop nutrition in food security —— 26
1.11	The role of crop nutrition in plants biofortification —— 27
1.12	General overview of global soils —— 28

1.12.1

Pakistani soils — 29

1.13	Best management practices for crop nutrition —— 31
1.13.1	Soil fertility and health improvement —— 31
1.13.2	Soil conservation and sustainability —— 32
1.13.3	Nutrient-use efficiency —— 32
1.13.4	Reduced cost of production —— 32
1.13.5	Crop growth and development —— 33
1.13.6	Increase yield per unit area —— 33
1.13.7	Reduce food security risks —— 33
1.13.8	Combat climate change —— 33
1.13.9	Overall sustainability in agriculture —— 33
1.14	Conclusion —— 35
1.15	Key messages —— 36
	References —— 36
Chapter 2	
Essentials	of crop nutrition and plant nutrient categorization —— 39
2.1	Introduction —— 39
2.2	Crop nutrition —— 40
2.3	Principles of crop nutrition —— 41
2.4	Law of diminishing returns —— 42
2.5	Crop nutrition and law of diminishing returns —— 43
2.6	Nutrient interactions —— 44
2.7	Nutrient ratios —— 45
2.8	Criteria of essentiality of plant nutrients —— 46
2.8.1	Additional considerations for essential nutrients —— 47
2.9	Essential nutrients for plants —— 47
2.10	The macro- and micronutrients for plant growth
	and development —— 51
2.10.1	Macronutrients for plants —— 53
2.10.2	Micronutrients for plants —— 53
2.10.3	Key differences in macro- and micronutrients —— 53
2.11	Beneficial nutrients for plants —— 55
2.12	The chemical nature of essential elements —— 55
2.13	Chemical properties of essential elements —— 58
2.14	Sources of essential elements —— 60
2.15	Theories of nutrient uptake —— 63
2.16	Nutrient mobility —— 65
2.16.1	Nutrient mobility in soil —— 65
2.16.2	Nutrient uptake and mobility in plants —— 65
2.16.3	Nutrient deficiency and mobility —— 66
2.17	Essential elements availability in the form of cations and anions —— 67
2.17.1	Cations (positively charged ions) —— 67

2.17.2	Anions (negatively charged ions) —— 67
2.17.3	Charge on soil —— 68
2.17.4	Charge on plant roots —— 69
2.18	Root-soil interaction —— 70
2.19	Factors influencing nutrient uptake —— 71
2.19.1	External factors — 72
2.19.2	Internal factors —— 82
2.20	The role of enzymes in crop nutrition —— 84
2.21	Nutrients concentration in soils and plants —— 88
2.22	Nutrients availability and uptake —— 90
2.23	Nutrients uptake (kg/ton) —— 92
2.24	Nutrients loss from soil —— 93
2.25	Fertilizers (NPK) recommendations —— 95
2.26	Deficiency symptoms of essential elements —— 96
2.27	Fertilizers as plant food —— 100
2.28	Fertilizers reaction in soils —— 101
2.29	Conclusion —— 105
2.30	Key messages —— 106
	References —— 106
Chapter 3	
The vital rol	le of nitrogen —— 108
The vital rol 3.1	le of nitrogen —— 108 Introduction —— 108
3.1	Introduction —— 108
3.1 3.2	Introduction —— 108 Importance of nitrogen —— 109
3.1 3.2 3.3	Introduction — 108 Importance of nitrogen — 109 Nitrogen fixation — 111
3.1 3.2 3.3 3.4	Introduction — 108 Importance of nitrogen — 109 Nitrogen fixation — 111 Nitrogen uptake and assimilation — 112
3.1 3.2 3.3 3.4 3.5	Introduction — 108 Importance of nitrogen — 109 Nitrogen fixation — 111 Nitrogen uptake and assimilation — 112 Factors influencing nitrogen availability — 113
3.1 3.2 3.3 3.4 3.5 3.5.1	Introduction — 108 Importance of nitrogen — 109 Nitrogen fixation — 111 Nitrogen uptake and assimilation — 112 Factors influencing nitrogen availability — 113 Nitrogen inputs — 114
3.1 3.2 3.3 3.4 3.5 3.5.1 3.5.2	Introduction — 108 Importance of nitrogen — 109 Nitrogen fixation — 111 Nitrogen uptake and assimilation — 112 Factors influencing nitrogen availability — 113 Nitrogen inputs — 114 Soil properties — 114
3.1 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3	Introduction — 108 Importance of nitrogen — 109 Nitrogen fixation — 111 Nitrogen uptake and assimilation — 112 Factors influencing nitrogen availability — 113 Nitrogen inputs — 114 Soil properties — 114 Environmental factors — 114
3.1 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.5.4	Introduction — 108 Importance of nitrogen — 109 Nitrogen fixation — 111 Nitrogen uptake and assimilation — 112 Factors influencing nitrogen availability — 113 Nitrogen inputs — 114 Soil properties — 114 Environmental factors — 114 Management practices — 115
3.1 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.6	Introduction — 108 Importance of nitrogen — 109 Nitrogen fixation — 111 Nitrogen uptake and assimilation — 112 Factors influencing nitrogen availability — 113 Nitrogen inputs — 114 Soil properties — 114 Environmental factors — 114 Management practices — 115 Importance of nitrogen for plant health — 115
3.1 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.6 3.7	Introduction — 108 Importance of nitrogen — 109 Nitrogen fixation — 111 Nitrogen uptake and assimilation — 112 Factors influencing nitrogen availability — 113 Nitrogen inputs — 114 Soil properties — 114 Environmental factors — 114 Management practices — 115 Importance of nitrogen for plant health — 115 Physiological functions of nitrogen in crop plants — 116
3.1 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.6 3.7 3.8	Introduction — 108 Importance of nitrogen — 109 Nitrogen fixation — 111 Nitrogen uptake and assimilation — 112 Factors influencing nitrogen availability — 113 Nitrogen inputs — 114 Soil properties — 114 Environmental factors — 114 Management practices — 115 Importance of nitrogen for plant health — 115 Physiological functions of nitrogen in crop plants — 116 Nitrogen deficiency symptoms in plants — 117
3.1 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.6 3.7 3.8 3.9	Introduction — 108 Importance of nitrogen — 109 Nitrogen fixation — 111 Nitrogen uptake and assimilation — 112 Factors influencing nitrogen availability — 113 Nitrogen inputs — 114 Soil properties — 114 Environmental factors — 114 Management practices — 115 Importance of nitrogen for plant health — 115 Physiological functions of nitrogen in crop plants — 116 Nitrogen deficiency symptoms in plants — 117 Nitrogen toxicity in plants — 118
3.1 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.6 3.7 3.8 3.9 3.9.1	Introduction — 108 Importance of nitrogen — 109 Nitrogen fixation — 111 Nitrogen uptake and assimilation — 112 Factors influencing nitrogen availability — 113 Nitrogen inputs — 114 Soil properties — 114 Environmental factors — 114 Management practices — 115 Importance of nitrogen for plant health — 115 Physiological functions of nitrogen in crop plants — 116 Nitrogen deficiency symptoms in plants — 117 Nitrogen toxicity in plants — 118 Ammonium toxicity — 119
3.1 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.6 3.7 3.8 3.9 3.9.1 3.9.2	Introduction — 108 Importance of nitrogen — 109 Nitrogen fixation — 111 Nitrogen uptake and assimilation — 112 Factors influencing nitrogen availability — 113 Nitrogen inputs — 114 Soil properties — 114 Environmental factors — 114 Management practices — 115 Importance of nitrogen for plant health — 115 Physiological functions of nitrogen in crop plants — 116 Nitrogen deficiency symptoms in plants — 117 Nitrogen toxicity in plants — 118 Ammonium toxicity — 119 Nitrate toxicity — 119
3.1 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.6 3.7 3.8 3.9 3.9.1 3.9.2 3.10	Introduction — 108 Importance of nitrogen — 109 Nitrogen fixation — 111 Nitrogen uptake and assimilation — 112 Factors influencing nitrogen availability — 113 Nitrogen inputs — 114 Soil properties — 114 Environmental factors — 114 Management practices — 115 Importance of nitrogen for plant health — 115 Physiological functions of nitrogen in crop plants — 116 Nitrogen deficiency symptoms in plants — 117 Nitrogen toxicity in plants — 118 Ammonium toxicity — 119 Nitrogenous fertilizers — 120
3.1 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.6 3.7 3.8 3.9 3.9.1 3.9.2 3.10 3.11	Introduction — 108 Importance of nitrogen — 109 Nitrogen fixation — 111 Nitrogen uptake and assimilation — 112 Factors influencing nitrogen availability — 113 Nitrogen inputs — 114 Soil properties — 114 Environmental factors — 114 Management practices — 115 Importance of nitrogen for plant health — 115 Physiological functions of nitrogen in crop plants — 116 Nitrogen deficiency symptoms in plants — 117 Nitrogen toxicity in plants — 118 Ammonium toxicity — 119 Nitrate toxicity — 119 Nitrogenous fertilizers — 120 Global status of soil nitrogen — 122

3.14.1	Water pollution —— 127
3.14.2	Eutrophication —— 127
3.14.3	Air pollution —— 127
3.14.4	Climate change —— 128
3.14.5	Soil degradation —— 128
3.15	Management strategies to address environmental problems —— 129
3.16	Nitrogen cycle —— 130
3.17	Sustainable nitrogen management —— 131
3.17.1	Improving soil health —— 131
3.17.2	Better crop growth and development —— 131
3.17.3	Higher crop productivity and profitability —— 131
3.17.4	Food security and nutrition —— 132
3.17.5	Better environmental health —— 132
3.17.6	Alignment with UN SDGs —— 132
3.17.7	Strategies for sustainable nitrogen management —— 132
3.18	Conclusion —— 133
3.19	Key messages —— 134
	References —— 134
Chapter 4	
Harnessing	phosphorus for plant growth —— 137
4.1	Introduction —— 137
4.2	Importance of phosphorus —— 138
4.3	The role of phosphorus in plant growth and development —— 140
4.4	Physiological functions of phosphorus in plants —— 142
4.5	Deficiency symptoms of phosphorus in plants —— 143
4.6	Key aspects of phosphorus toxicity in plants —— 144
4.7	Management strategies to mitigate phosphorus toxicity
	problems —— 146
4.8	Phosphatic fertilizers —— 147
4.9	Phosphorus management in field crop production —— 148
4.10	Global status of soil phosphorus —— 149
4.11	Pakistan status of soil phosphorus —— 150
4.12	Phosphorus management for major crops of Pakistan —— 151
4.13	Phosphorus and environmental problems —— 152
4.14	Management strategies to address environmental problems —— 154
4.15	Phosphorus cycle —— 155
4.16	Sustainable phosphorus management —— 157
4.16.1	Improving soil health —— 157
4.16.2	Better crop growth and development —— 158
4.16.3	Higher crop productivity and profitability —— 158
4.16.4	Food security and nutrition —— 158

4.16.5	Better environmental health —— 158
4.16.6	Alignment with UN SDGs —— 159
4.17	Strategies for sustainable phosphorus management —— 159
4.18	Conclusion —— 161
4.19	Key messages —— 161
	References —— 162
Chapter 5	
Unlocking p	ootassium's potential —— 164
5.1	Introduction —— 164
5.2	Importance of potassium —— 165
5.3	Potassium importance for crop growth and development —— 167
5.4	Physiological functions of potassium in plants —— 169
5.5	Symptoms and methods for diagnosing potassium deficiency
	in crop plants —— 170
5.6	Diagnosing potassium deficiency —— 171
5.7	Potassium toxicity in soils and plants —— 172
5.8	Strategies to mitigate potassium toxicity problems —— 173
5.9	Potassium fertilizer sources —— 175
5.10	Strategies for effective potassium management —— 176
5.11	Global status of soil potassium —— 178
5.11.1	Challenges and opportunities —— 179
5.12	Pakistan's status of soil potassium —— 180
5.12.1	General soil characteristics —— 180
5.12.2	Potassium levels in Pakistani soils —— 180
5.12.3	Contributing factors to potassium deficiency —— 181
5.12.4	Strategies for improving potassium management —— 181
5.12.5	Potassium management for major crops —— 182
5.13	Environmental issues with potassium fertilizers —— 183
5.14	Strategies to mitigate K environmental impacts —— 185
5.15	Management strategies for potassium fertilizers —— 185
5.16	Potassium cycle —— 188
5.17	Sustainable potassium management —— 188
5.17.1	Improving soil health —— 188
5.17.2	Better crop growth and development —— 189
5.17.3	Higher crop productivity and profitability —— 189
5.17.4	Food security and nutrition —— 189
5.17.5	Better environmental health —— 190
5.17.6	Alignment with UN SDGs —— 190
5.18	Strategies for sustainable potassium management —— 190
5.19	Conclusion —— 192

5.20 Key messages — **192** References — **193**

Chapter 6

Seconda	ry nutrients at a glance (calcium, magnesium, and sulfur) —— 195
6.1	Introduction —— 195
6.2	Importance of calcium (Ca), magnesium (Mg), and sulfur (S) —— 196
6.2.1	Importance of secondary nutrients in crop production —— 197
6.3	Potential toxicity issues associated with these nutrients —— 200
6.4	Suggestions to overcome the toxicity issues associated with calcium
	(Ca), magnesium (Mg), and sulfur (S) —— 200
6.5	Calcium (Ca) fertilizers —— 201
6.6	Magnesium (Mg) fertilizers —— 202
6.7	Sulfur (S) fertilizers —— 203
6.8	Calcium (Ca), magnesium (Mg), and sulfur (S) fertilizer
	management —— 204
6.8.1	Calcium (Ca) —— 205
6.8.2	Magnesium (Mg) —— 205
6.8.3	Sulfur (S) —— 206
6.9	Improving yield and nutrition with calcium (Ca), magnesium (Mg),
	and sulfur (S) —— 206
6.10	Global status of soil calcium, magnesium, and sulfur —— 207
6.10.1	Global status of calcium (Ca) —— 207
6.10.2	Global status of magnesium (Mg) —— 207
6.10.3	Global status of sulfur (S) —— 207
6.10.4	Regional variations and trends —— 208
6.11	Pakistan's status of soil calcium, magnesium, and sulfur —— 208
6.11.1	Calcium (Ca) in Pakistan's soils —— 209
6.11.2	Magnesium (Mg) in Pakistan's soils —— 209
6.11.3	Sulfur (S) in Pakistan's soils —— 209
6.11.4	Addressing magnesium and sulfur deficiencies in Pakistan —— 209
6.12	Management of major crops in Pakistan —— 210
6.12.1	Wheat —— 210
6.12.2	Rice —— 210
6.12.3	Maize —— 211
6.12.4	Cotton —— 211
6.12.5	Sugarcane —— 211
5.13	Uptake of calcium (Ca), magnesium (Mg), and sulfur (S) by crops —— 212
5.13.1	Calcium uptake —— 212
5.13.2	Magnesium uptake —— 212
5.13.3	Sulfur uptake —— 213
5.14	Implications for secondary nutrient management —— 214

6.14.1	Enhancing soil fertility and structure —— 214
6.14.2	Balancing nutrient ratios —— 214
6.14.3	Supporting crop protein and oil content —— 214
6.14.4	Precision agriculture and targeted applications —— 215
6.14.5	Environmental sustainability —— 215
6.15	Recommendations for secondary nutrient fertilizers —— 215
6.15.1	Balanced fertilization —— 216
6.15.2	Organic amendments —— 216
6.15.3	Foliar applications —— 217
6.16	Detailed fertilizer recommendations for secondary nutrient
	management —— 217
6.16.1	Tailored nutrient management —— 217
6.16.2	Integration of organic and inorganic sources —— 217
6.16.3	Monitoring and adjustment —— 218
6.17	Importance of calcium (Ca) in acidic soils —— 219
6.17.1	Soil pH regulation —— 219
6.17.2	Nutrient availability —— 219
6.17.3	Soil structure and root development —— 219
6.17.4	For acidic soils (low pH) —— 219
6.18	Importance of sulfur (S) in alkaline soils —— 220
6.18.1	Regulation of soil pH —— 220
6.18.2	Nutrient availability —— 220
6.18.3	Crop health and yield —— 220
6.18.4	For alkaline soils (high pH) —— 220
6.19	Environmental concerns associated with secondary nutrients —— 221
6.19.1	Calcium —— 221
6.19.2	Magnesium —— 221
6.19.3	Sulfur —— 221
6.20	Management strategies to address the environmental problems
	associated with secondary nutrients —— 222
6.20.1	Nutrient management planning —— 222
6.20.2	Precision agriculture techniques —— 222
6.20.3	Balanced fertilization —— 222
6.20.4	Controlled-release fertilizers —— 223
6.20.5	Proper irrigation management —— 223
6.20.6	Conservation tillage and cover crops —— 223
6.20.7	Nutrient cycling and organic matter management —— 223
6.20.8	Education and awareness —— 223
6.21	Effective management of secondary nutrients —— 224
6.22	Sustainable secondary nutrient management (Ca, Mg, and S) —— 225
6.22.1	Improving soil health —— 226
6.22.2	Better crop growth and development —— 226

6.22.3	Higher crop productivity and profitability —— 226
6.22.4	Food security and nutrition —— 226
6.22.5	Better environmental health —— 227
6.22.6	Alignment with UN SDGs —— 227
6.23	Strategies for sustainable secondary nutrient management —— 227
6.23.1	Use of the 4R principle —— 227
6.23.2	Soil testing and monitoring —— 228
6.23.3	Use of cover crops and crop rotation —— 228
6.23.4	Recycling organic matter —— 228
6.23.5	Erosion control practices —— 228
6.23.6	Precision agriculture —— 228
6.23.7	Integrated nutrient management (INM) —— 229
6.24	Conclusion —— 229
6.25	Key messages —— 230
	References —— 231
Chapter	7
Micronu	trients: small yet crucial —— 233
7.1	Introduction —— 233
7.2	Iron (Fe) in agriculture —— 234
7.2.1	Importance —— 234
7.2.2	Physiological functions in plants —— 234
7.2.3	Deficiency symptoms in plants —— 235
7.3	Manganese (Mn) in agriculture —— 236
7.3.1	Importance —— 236
7.3.2	Physiological functions in plants —— 237
7.3.3	Deficiency symptoms in plants —— 237
7.4	Zinc (Zn) in agriculture —— 238
7.4.1	Importance —— 238
7.4.2	Physiological functions in plants —— 239
7.4.3	Deficiency symptoms in plants —— 239
7.5	Copper (Cu) in agriculture —— 241
7.5.1	Importance —— 241
7.5.2	Physiological functions in plants —— 241
7.5.3	Deficiency symptoms in plants —— 242
7.6	Molybdenum (Mo) in agriculture —— 242
7.6.1	Importance —— 242
7.6.2	Physiological functions in plants —— 243
7.6.3	Deficiency symptoms in plants —— 244
7.7	Boron (B) in agriculture —— 245
7.7.1	Importance —— 245
7.7.2	Physiological functions in plants —— 246

7.7.3	Deficiency symptoms in plants —— 246
7.8	Chlorine (Cl) in agriculture —— 247
7.8.1	Importance —— 247
7.8.2	Physiological functions in plants —— 248
7.8.3	Deficiency symptoms in plants —— 248
7.9	Nickel (Ni) in agriculture —— 249
7.9.1	Importance —— 249
7.9.2	Physiological functions in plants —— 250
7.9.3	Deficiency symptoms in plants —— 250
7.10	Negative effects of micronutrients —— 252
7.11	Micronutrient management to mitigate negative effects —— 252
7.12	Micronutrient fertilizers —— 253
7.12.1	Chelated micronutrient fertilizers —— 253
7.12.2	Micronutrient fertilizer mixtures —— 253
7.12.3	Micronutrient amendments and supplements —— 254
7.12.4	Organic sources —— 254
7.13	Global status of soil micronutrients —— 255
7.13.1	Iron (Fe) —— 255
7.13.2	Manganese (Mn) —— 255
7.13.3	Zinc (Zn) —— 256
7.13.4	Copper (Cu) —— 256
7.13.5	Boron (B) —— 256
7.13.6	Molybdenum (Mo) —— 256
7.13.7	Chlorine (Cl) —— 257
7.14	Pakistan's status of soil micronutrients —— 257
7.14.1	Key characteristics of Pakistani soils —— 257
7.14.2	Micronutrient status and application —— 258
7.14.3	Economic constraints and adoption —— 259
7.15	Micronutrient management in crop production —— 259
7.16	Micronutrient uptake by crops (kg/ha) —— 261
7.17	Micronutrient recommendations for crops —— 261
7.18	Effective management of micronutrients for major crops
	in Pakistan —— 262
7.19	Environmental problems with micronutrients —— 264
7.19.1	Water contamination —— 264
7.19.2	Soil accumulation —— 264
7.19.3	Nontarget effects —— 264
7.19.4	Nutrient imbalance —— 264
7.20	Management strategies for micronutrient environmental
	concerns —— 264
7.20.1	Soil testing and nutrient recommendations —— 265
7.20.2	Nutrient management planning —— 265

XVIII — Contents

7.20.3	Timing and application methods —— 265
7.20.4	Balanced fertilization —— 265
7.20.5	Environmental stewardship —— 265
7.20.6	Education and awareness —— 266
7.21	Mismatch of micronutrient deficiency with diseases —— 266
7.22	Sustainable micronutrient management —— 267
7.22.1	Improving soil health —— 268
7.22.2	Better crop growth and development —— 268
7.22.3	Higher crop productivity and profitability —— 268
7.22.4	Food security and nutrition —— 269
7.22.5	Better environmental health —— 269
7.22.6	Alignment with UN SDGs —— 269
7.23	Strategies for sustainable micronutrient management —— 270
7.23.1	Use of the 4R principle —— 270
7.23.2	Soil testing and monitoring —— 270
7.23.3	Use of cover crops and crop rotation —— 270
7.23.4	Recycling organic matter —— 270
7.23.5	Erosion control practices —— 271
7.23.6	Precision agriculture —— 271
7.23.7	Integrated nutrient management (INM) —— 271
7.24	Conclusion —— 271
7.25	Key messages —— 272
	References —— 273
Chapter 8	
•	beneficial elements and heavy metals —— 275
8.1	Introduction —— 275
8.2	Importance —— 276
8.2.1	Silicon (Si) —— 276
8.2.2	Sodium (Na) —— 276
8.2.3	Cobalt (Co) —— 277
8.2.4	Selenium (Se) —— 277
8.2.5	Vanadium (V) —— 277
8.3	Deficiency symptoms for beneficial elements —— 278
8.4	Potential toxicities and strategies to overcome toxicity —— 278
8.5	Sources of beneficial elements —— 280
8.6	Beneficial element management —— 281
8.7	Beneficial element management for some crops —— 282
8.8	Environmental problems and strategies to overcome their
	toxicities —— 283
8.9	Sustainable beneficial element management —— 284
8.9.1	Improving soil health —— 284

8.9.2	Better crop growth and development —— 285
8.9.3	Higher crop productivity and profitability —— 285
8.9.4	Food security and nutrition —— 285
8.10	Better environmental health —— 286
8.11	Alignment with UN SDGs —— 286
8.12	Strategies for sustainable beneficial element management —— 286
8.12.1	Use of the 4R principle —— 286
8.12.2	Soil testing and monitoring —— 287
8.12.3	Use of cover crops and crop rotation —— 287
8.12.4	Recycling organic matter —— 287
8.12.5	Erosion control practices —— 287
8.12.6	Precision agriculture —— 287
8.12.7	Integrated nutrient management (INM) —— 287
8.13	Benefits of sustainable beneficial element management —— 288
8.14	Heavy metals —— 288
8.15	Heavy metal toxicity —— 289
8.15.1	Highly toxic elements (e.g., uranium, plutonium, radium) —— 290
8.15.2	Moderately toxic elements (e.g., lead, cadmium, mercury) —— 291
8.15.3	Less toxic elements (e.g., gold, silver, platinum) —— 291
8.15.4	Varied toxicity (e.g., copper, zinc, nickel) —— 291
8.15.5	Context and exposure —— 291
8.16	The impact of heavy metals on different organisms —— 291
8.16.1	Crop health —— 291
8.16.2	Human health —— 292
8.16.3	Animal health —— 292
8.16.4	Birds' health —— 292
8.16.5	Fish health —— 292
8.16.6	Insects' health —— 293
8.17	Approaches used in various disciplines to address heavy
	metal toxicities —— 293
8.17.1	Crop production —— 293
8.17.2	Human health —— 293
8.17.3	Environmental sciences —— 294
8.17.4	Animal health —— 294
8.17.5	Wildlife and ecosystems —— 294
8.17.6	Monitoring and conservation —— 295
8.18	Sustainable heavy metal management —— 295
8.18.1	Improving soil health —— 295
8.18.2	Better crop growth and development —— 296
8.18.3	Higher crop productivity and profitability —— 296
8.18.4	Food security and nutrition —— 296
8.18.5	Better environmental health —— 297

8.18.6	Alignment with UN SDGs —— 297	
8.19	Strategies for sustainable heavy metal management —— 29	7
8.20	Conclusion —— 298	
8.21	Key messages —— 299	
	References —— 300	
Chapter 9		
	g fertilizers and their optimal utilization —— 302	
9.1	Introduction —— 302	
9.2	Fertilizers —— 303	
9.2.1	Straight fertilizers —— 303	
9.2.2	Double fertilizers — 304	
9.2.3	Complex fertilizers (NPK fertilizers) — 304	
9.2.4	Secondary nutrient fertilizers — 305	
9.2.5	Micronutrient fertilizers — 306	
9.2.6	Specialty fertilizers —— 306	
9.3	Global fertilizers outlook —— 307	
9.4	The role of chemical fertilizers in modern agriculture —— 30	8
9.4.1	Nutrient availability —— 308	
9.4.2	Precision and control —— 310	
9.4.3	Higher yields and improved crop quality —— 312	
9.4.4	Food security —— 313	
9.4.5	Fertilizers in green revolution —— 315	
9.5	Challenges to fertilizers industry —— 316	
9.5.1	Environmental impact —— 317	
9.5.2	Economic and supply chain issues —— 317	
9.5.3	Accessibility and distribution —— 318	
9.5.4	Regulatory and policy challenges —— 318	
9.5.5	Sustainability and innovation —— 318	
9.5.6	Health and safety —— 318	
9.5.7	Regional and country-specific issues —— 319	
9.6	Low soil fertility —— 320	
9.6.1	Natural factors —— 320	
9.6.2	Human activities —— 321	
9.6.3	Socioeconomic factors —— 321	
9.7	Global challenges associated with low soil fertility —— 322	
9.7.1	Decreased agricultural productivity —— 322	
9.7.2	Food insecurity —— 322	
9.7.3	Economic impacts —— 323	
9.7.4	Environmental degradation —— 323	
9.7.5	Climate change resilience —— 323	
9.7.6	Loss of ecosystem services —— 323	
	▼	

9.7.7	Human health concerns —— 323
9.8	Addressing the global challenges of low soil fertility —— 324
9.8.1	Soil testing and monitoring —— 325
9.8.2	Nutrient management —— 325
9.8.3	Conservation agriculture —— 325
9.8.4	Policy and support —— 325
9.8.5	Research and innovation —— 325
9.9	Challenges of low soil fertility in Pakistan —— 325
9.9.1	Reasons for low soil fertility in Pakistan —— 326
9.9.2	Factors contribute to high nutrient losses in Pakistan —— 327
9.9.3	Factors contribute to pollution problem in Pakistan —— 328
9.10	Sustainable nutrient management strategies to control nutrients
	losses and pollution risks in Pakistan —— 329
9.10.1	Precision nutrient management —— 330
9.10.2	Conservation practices —— 330
9.10.3	Buffer zones and vegetative buffers —— 330
9.10.4	Integrated water management —— 330
9.10.5	Education and awareness —— 330
9.11	Fertilizer recommendations for different crops in Pakistan —— 331
9.12	Fertilizer-use efficiency (FUE) —— 331
9.12.1	Significance of FUE —— 332
9.12.2	Improving FUE —— 332
9.12.3	Fertilizer-use efficiency (FUE) in response to method of
	application —— 334
9.12.4	Factors influencing FUE —— 335
9.13	Regional variations in fertilizer-use efficiency (FUE) —— 336
9.13.1	Reasons for high FUE —— 337
9.13.2	Reasons for low FUE —— 337
9.14	Low nitrogen-use efficiency —— 338
9.15	Low phosphorus-use efficiency —— 338
9.16	Low potassium-use efficiency —— 339
9.17	Improvement in fertilizer-use efficiency using best management
	practices —— 340
9.17.1	Soil testing and nutrient recommendations —— 341
9.17.2	Balanced fertilizer application —— 341
9.17.3	Precision nutrient management —— 341
9.17.4	Integrated nutrient management —— 342
9.17.5	Education and extension services —— 342
9.18	Influence of cultural practices on rate of fertilizer application —— 342
9.18.1	Timing of fertilizer application —— 342
9.18.2	Placement of fertilizers —— 342
9.18.3	Crop rotation and intercropping —— 343

9.18.4	Tillage practices —— 343
9.18.5	Mulching and cover cropping —— 343
9.18.6	Irrigation management —— 343
9.18.7	Soil pH management 343
9.18.8	Nutrient cycling and organic matter management —— 344
9.18.9	Weeds and insect pests management —— 344
9.18.10	Crop genetics (varieties vs. hybrids) —— 344
9.18.11	Integrated nutrient management (INM) —— 345
9.19	Methods of fertilizer application —— 345
9.19.1	Broadcasting —— 345
9.19.2	Banding —— 346
9.19.3	Foliar application —— 346
9.19.4	Seed coating —— 346
9.19.5	Injection or fertigation —— 346
9.20	Foliar nutrition —— 347
9.20.1	Important points to be consider regarding foliar nutrition
	in field crops —— 347
9.20.2	Drawbacks associated with foliar nutrition —— 348
9.21	Fertigation —— 349
9.21.1	Details about fertigation in field crops —— 349
9.21.2	Drawbacks associated with fertigation —— 350
9.22	Effective fertilizer management —— 351
9.22.1	Soil testing and nutrient management planning —— 353
9.22.2	Balanced fertilization —— 353
9.22.3	Optimal application rates and timing —— 353
9.22.4	Site-specific nutrient management —— 353
9.22.5	Use of slow-release and controlled-release fertilizers —— 353
9.22.6	Integrated nutrient management —— 354
9.22.7	Fertigation and irrigation management —— 354
9.22.8	Farmer education and awareness —— 354
9.22.9	Environmental stewardship —— 354
9.23	Controlled-release fertilizers —— 354
9.23.1	Key features of controlled-release fertilizers —— 355
9.23.2	Benefits of controlled-release fertilizers —— 355
9.23.3	Mechanisms of controlled-release —— 356
9.23.4	Challenges and considerations —— 356
9.24	Balanced nutrition for field crops —— 357
9.24.1	Approaches for balanced nutrition of crops —— 358
9.24.2	Importance of balanced fertilization —— 358
9.24.3	Practical implementation of balanced fertilization —— 359
9.24.4	Benefits of balanced fertilization —— 359
9.25	The 4Rs of nutrient management in field crops —— 360

9.26	Precision plant nutrition or variable-rate technology (VRT) —— 361
9.26.1	Advantages of precision plant nutrition —— 361
9.26.2	Disadvantages of precision plant nutrition —— 362
9.27	Management of fertilizers for sustainable agriculture and global food security —— 363
9.27.1	Key components of fertilizer management —— 363
9.27.2	Benefits of proper fertilizer management —— 364
9.27.3	Strategies for effective fertilizer management —— 365
9.28	Effective fertilizer management: a holistic approach —— 365
9.28.1	Key components of effective fertilizer management —— 366
9.28.2	Benefits of effective fertilizer management —— 366
9.28.3	Strategies for implementing effective fertilizer management —— 367
9.29	Fertilizer calculations —— 368
9.29.1	Basic formula for fertilizer calculations —— 368
9.29.2	Steps for fertilizer calculations —— 368
9.29.3	Examples —— 368
9.29.4	Fertilizer calculation from combined DAP and urea —— 369
9.30	Conversion factors for nutrients in fertilizers —— 371
9.31	Economic analysis of fertilizers application in field experiments —— 373
9.31.1	Example of economic analysis —— 375
9.31.2	Analyzing economic indicators: CBR vs. ROI —— 376
9.32	Partial factor productivity (PFP) —— 377
9.33	Agronomic efficiency (AE) —— 378
9.34	Case studies from Peshawar, Khyber Pakhtunkhwa (Pakistan) —— 381
9.34.1	Nitrogen fertilizers experiment —— 381
9.34.2	Phosphorus fertilizer experiment —— 382
9.35	The role of chemical and synthetic fertilizers in UN SDGs —— 382
9.35.1	Improving soil fertility and soil health —— 382
9.35.2	Enhancing crop productivity and profitability —— 383
9.35.3	Ensuring food security and nutrition —— 383
9.35.4	Promoting environmental quality —— 383
9.35.5	Supporting sustainable agriculture and UN SDGs —— 384
9.36	Conclusion —— 385
9.37	Key messages —— 385
	References —— 386
Chapter '	10
Enriching	soils with amendments and organic fertilization —— 389
10.1	Introduction —— 389

10.1	Introduction —— 389
10.2	Soil amendments —— 390
10.3	The role of soil amendments —— 390
10.3.1	Improving crop productivity —— 390

10.3.2	Enhancing growers' profitability —— 392
10.3.3	Ensuring food security —— 392
10.3.4	Promoting soil health —— 392
10.3.5	Mitigating environmental impacts —— 392
10.3.6	Global warming and climate change —— 393
10.4	Soil amendments for alkaline soils —— 393
10.5	Soil amendments for acidic soils —— 393
10.6	Soil amendments' disadvantages —— 394
10.7	Organic fertilizers —— 394
10.8	Some common organic sources —— 396
10.8.1	Animal manures – rich sources of nutrients —— 396
10.8.2	Plant residues – recycling crop nutrients —— 397
10.8.3	Compost and vermicompost – the power of decomposition —— 397
10.8.4	Biochar and ash – carbon-based soil enhancers —— 397
10.9	The role of organic fertilizers —— 397
10.9.1	Improving crop productivity —— 398
10.9.2	Improving fertilizer-use efficiency —— 398
10.9.3	Enhancing water-use efficiency —— 398
10.9.4	Enhancing growers' profitability —— 398
10.9.5	Ensuring food security —— 399
10.9.6	Promoting soil health —— 399
10.9.7	Mitigating environmental impacts —— 399
10.9.8	Addressing global warming and climate change —— 399
10.10	Soil organic matter and their impact on nitrogen fertility —— 399
10.11	Disadvantages of organic fertilizers —— 400
10.11.1	Nutrient variability —— 400
10.11.2	Slow release of nutrients —— 400
10.11.3	Bulkiness and handling —— 401
10.11.4	Potential contaminants —— 401
10.12	Compost versus vermicompost —— 401
10.12.1	Compost —— 401
10.12.2	Vermicompost —— 401
10.12.3	The role of compost and vermicompost —— 402
10.13	Compost versus biochar —— 402
10.13.1	Composition —— 402
10.13.2	Production process —— 403
10.13.3	Effects on soil —— 403
10.13.4	Application and benefits —— 403
10.13.5	The role of compost and biochar —— 404
0.13.6	Disadvantages of compost and biochar —— 405
0.14	Compost, biochar, and ash composition —— 406
0.14.1	Differences in compost, biochar, and ash —— 407

10.15	Ash versus biochar —— 407
10.15.1	Composition —— 408
10.15.1	Production process —— 409
10.15.2	Properties —— 409
10.15.4	Effects on soil —— 409
10.15.5	Environmental impact —— 409
10.15.6	The role of ash and biochar —— 410
10.15.7	Disadvantages of ash and biochar —— 411
10.16	Use of biochar in alkaline and acidic soils —— 412
10.16.1	Biochar in alkaline soils —— 412
10.16.2	Biochar in acidic soils —— 413
10.17	Use of ash in alkaline and acidic soils —— 414
10.17.1	Ash in alkaline soils —— 414
10.17.1	Ash in acidic soils —— 415
10.17.2	The role of organic sources and soil amendments
10.10	under saline soil —— 415
10.18.1	Ash in saline soils —— 416
10.18.2	Biochar in saline soils —— 416
10.18.3	Compost in saline soils —— 416
10.18.4	Other soil amendments in saline soils —— 417
10.19	The role of soil amendments and organic fertilizers
10113	in combating soil pollution —— 417
10.19.1	Types of soil pollutants —— 418
10.19.2	Problems associated with soil pollution —— 418
10.20	Role of organic manures in soil reclamation —— 419
10.20.1	Biochar in soil reclamation —— 419
10.20.2	Ash in soil reclamation —— 420
10.20.3	Compost in soil reclamation —— 420
10.20.4	Other soil amendments in soil reclamation —— 421
10.21	The role of green manuring in improving soil fertility and health —— 421
10.21.1	Green manuring —— 421
10.21.2	Benefits of green manuring for soil fertility and health —— 422
10.21.3	The role of green manuring in INM and ISFM —— 422
10.22	The role of intercropping and crop rotation in increasing soil fertility
	and productivity —— 424
10.22.1	Intercropping —— 424
10.22.2	Crop rotation —— 425
10.22.3	Role of intercropping and crop rotation with legume crops —— 425
10.23	NPK concentration and C:N ratios of different animal
	manure sources —— 426
10.24	NPK concentration and C:N ratios of different plant residues —— 427

11.3.3

10.25	Case studies: nutrient management in cereal-based systems in Khyber Pakhtunkhwa (Pakistan) —— 428
10.26	Soil organic carbon: importance and implications for desertification,
10.20	climate change, food security, and human health —— 429
10.26.1	Importance in combating soil desertification —— 429
10.26.2	Role in combating climate change —— 429
10.26.3	Impact on food security —— 430
10.26.4	Healthy soils, healthy life —— 430
10.27	Black soils —— 431
10.27.1	Soil organic carbon (SOC) in black soils —— 431
10.27.2	Global significance of black soils —— 432
10.28	Organic and inorganic soils —— 433
10.28.1	Composition —— 433
10.28.2	Formation —— 433
10.28.3	Characteristics —— 433
10.28.4	Distribution of organic soils —— 434
10.29	Black soils and organic soils —— 434
10.29.1	Composition —— 434
10.29.2	Formation —— 435
10.29.3	Geographical distribution —— 435
10.29.4	Characteristics —— 435
10.30	Integrated approaches and best management practices
	of organic sources —— 436
10.31	Challenges and future perspectives —— 437
10.32	Soil organic sources and amendments: UN SDGs —— 438
10.32.1	Improving soil fertility and soil health —— 438
10.32.2	Boosting crop productivity and profitability —— 438
10.32.3	Ensuring food security and nutrition —— 439
10.32.4	Promoting environmental quality —— 439
10.32.5	Supporting sustainable agriculture and UN-SDGs —— 439
10.33	Conclusion —— 440
10.34	Key messages —— 441
	References —— 441
Chapter 11	
Harnessing	the power of beneficial microbes and biofertilizers —— 444
	Introduction —— 444
11.2	Understanding beneficial microbes —— 445
11.3	Types of beneficial microbes —— 445
11.3.1	Nitrogen-fixing bacteria —— 445
11.3.2	Phosphate-solubilizing bacteria —— 446

Zinc-solubilizing bacteria —— 446

11.3.4	Plant growth-promoting rhizobacteria (PGPR) —— 447
11.3.5	Mycorrhizal fungi —— 447
11.3.6	Trichoderma fungi —— 447
11.4	Beneficial microbes' role in agricultural systems —— 447
11.4.1	Nutrient cycling —— 447
11.4.2	Disease suppression —— 448
11.4.3	Soil structure improvement —— 448
11.4.4	Enhancing plant resilience —— 448
11.5	Defining biofertilizers and beneficial microbes —— 448
11.6	Role of beneficial microbes and biofertilizers —— 449
11.6.1	Improving crop productivity —— 449
11.6.2	Enhancing growers' profitability —— 449
11.6.3	Ensuring food security —— 450
11.6.4	Promoting soil health —— 450
11.6.5	Mitigating environmental impacts —— 450
11.6.6	Global warming and climate change —— 450
11.7	Modes of action of beneficial microbes —— 451
11.7.1	Enhancing nutrient availability —— 452
11.7.2	Production of growth-promoting substances —— 452
11.8	Beneficial microbes' interactions with plants and soil —— 454
11.8.1	Root colonization —— 454
11.8.2	Nutrient availability —— 454
11.8.3	Plant growth promotion —— 454
11.8.4	Disease suppression —— 455
11.8.5	Abiotic stress tolerance —— 455
11.8.6	Soil health improvement —— 455
11.8.7	Signal exchange —— 455
11.9	The role of beneficial microorganisms (BMOs) in plant
	growth and health —— 456
11.9.1	Production of growth-promoting substances —— 456
11.9.2	Biocontrol of pathogens —— 456
11.9.3	Modulation of plant immune responses —— 457
11.9.4	Improvement of soil health —— 457
11.9.5	Case studies and applications —— 457
11.10	Beneficial microbes functions —— 458
11.10.1	Production of growth-promoting substances —— 458
11.10.2	Biocontrol of pathogens —— 458
11.10.3	Modulation of plant immune responses —— 458
11.11	Benefits of biofertilizers in agriculture —— 459
11.11.1	Improving soil fertility —— 459
11.11.2	Enhancing nutrient uptake efficiency —— 459
11.11.3	Reducing the need for synthetic fertilizers —— 459

XXVIII — Contents

11.11.4	Promotion of sustainable farming practices —— 460
11.11.5	Positive impact on crop yield, quality, and disease resistance —— 460
11.12	Types of biofertilizers —— 460
11.12.1	Nitrogen-fixing biofertilizers —— 461
11.12.2	Phosphate-solubilizing biofertilizers —— 461
11.12.3	Plant growth-promoting rhizobacteria (PGPR) biofertilizers —— 461
11.12.4	Mycorrhizal biofertilizers —— 461
11.12.5	Other microbial formulations —— 463
11.13	Application methods of biofertilizers —— 463
11.13.1	Seed treatment —— 463
11.13.2	Soil application —— 464
11.13.3	Foliar spray —— 464
11.13.4	Drip irrigation —— 465
11.14	Factors influencing efficacy of biofertilizers —— 465
11.14.1	Proper handling —— 466
11.14.2	Compatibility with chemical inputs —— 466
11.14.3	Soil conditions —— 466
11.14.4	Nutrient availability —— 466
11.15	Practical aspects of biofertilizer application —— 467
11.15.1	Quality control —— 467
11.15.2	Proper storage —— 467
11.15.3	Shelf life —— 467
11.15.4	Application timing —— 467
11.15.5	Compatibility with chemical inputs —— 467
11.16	Challenges associated with the use of biofertilizers
	and ongoing research —— 468
11.16.1	Viability and shelf life —— 468
11.16.2	Application timing and dosage —— 468
11.16.3	Commercial scale production —— 468
11.16.4	Standardized quality control and improved formulation
	techniques —— 468
11.17	Combining biofertilizers with other agricultural practices —— 469
11.17.1	Organic farming —— 469
11.17.2	Precision agriculture —— 470
11.18	Case study —— 472
11.19	Biofertilizers and beneficial microbes role in UN-SDGs —— 472
11.19.1	Improving soil fertility and soil health —— 473
11.19.2	Enhancing crop productivity and profitability —— 473
11.19.3	Ensuring food security and nutrition —— 473
11.19.4	Promoting environmental quality —— 474
11.19.5	Supporting sustainable agriculture and UN-SDGs —— 474
11.20	Conclusion —— 475

11.21	Key messages —— 475
	References —— 476

Chapter 12

Nanofert	ilizers: shaping the future of field crop production —— 479
12.1	Introduction —— 479
12.2	Definition and overview of nanofertilizers —— 480
12.3	Brief history and development —— 480
12.4	Importance and potential applications in agriculture —— 480
12.5	Advantages of nanofertilizers —— 481
12.5.1	Improved nutrient efficiency —— 482
12.5.2	Increased crop productivity —— 482
12.5.3	Reduced environmental impacts —— 482
12.5.4	Precision agriculture —— 482
12.5.5	Sustainable agriculture —— 482
12.6	Types of nanofertilizers —— 483
12.6.1	Metal-based nanofertilizers —— 483
12.6.2	Metal oxide nanofertilizers —— 483
12.6.3	Carbon-based nanofertilizers —— 483
12.6.4	Polymer-based nanofertilizers —— 483
12.7	Nanoparticles used in nanofertilizers —— 484
12.8	Different formulations and compositions of nanofertilizers —— 484
12.8.1	Nanoparticles embedded in carriers — 484
12.8.2	Nanoparticles coated on carriers —— 484
12.8.3	Nanoparticles incorporated in polymer matrices —— 485
12.8.4	Nanoparticles encapsulated in microspheres —— 485
12.9	Unique characteristics and properties of nanofertilizers —— 485
12.9.1	High surface-area-to-volume ratio —— 485
12.9.2	Controlled-release and slow-release properties —— 485
12.9.3	Enhanced nutrient uptake and utilization —— 485
12.9.4	Targeted delivery and specificity —— 486
12.9.5	Synergistic effects —— 486
12.10	Mechanisms and benefits of nanofertilizers —— 486
12.10.1	Uptake and delivery mechanisms of nanofertilizers in plants —— 486
12.10.2	Enhanced nutrient absorption and utilization efficiency —— 486
12.10.3	Increased crop yield and quality —— 487
12.10.4	Improved soil fertility and nutrient availability —— 487
12.10.5	Reduced environmental impacts and resource use —— 487
12.11	Synthesis and manufacturing of nanofertilizers —— 488
12.11.1	Methods and techniques for synthesizing nanofertilizers —— 488
12.11.2	Controllable synthesis approaches for desired properties —— 488
12.12	Scale-up production and commercialization considerations —— 489

12.12.1	Manufacturing efficiency —— 489
12.12.2	Quality control —— 489
12.12.3	Economic viability —— 489
12.13	Safety and regulatory aspects of nanofertilizers — 490
12.13.1	Toxicity assessment —— 490
12.13.2	Environmental impact —— 490
12.13.3	Regulation and standards —— 490
12.14	Application methods of nanofertilizers —— 490
12.14.1	Soil application techniques —— 491
12.14.2	Seed coating and treatment methods —— 491
12.14.3	Foliar spray and root drenching approaches —— 492
12.14.4	Integration with irrigation systems and fertigation —— 492
12.15	Challenges and limitations of nanofertilizers — 492
12.15.1	Environmental concerns and potential risks —— 492
12.15.2	Long-term effects on soil health and ecosystems —— 493
12.15.3	Economic feasibility and cost-effectiveness —— 493
12.15.4	Perception, acceptance, and adoption by farmers —— 493
12.16	Current research and future perspectives —— 493
12.16.1	Ongoing research in nanofertilizer development and applications —— 494
12.16.2	Innovative approaches and emerging trends —— 494
12.16.3	Potential synergies with other agricultural practices —— 494
12.16.4	Future prospects and implications for sustainable agriculture —— 495
12.17	Case studies and success stories —— 495
12.17.1	Rice production in Vietnam —— 495
12.17.2	Tomato cultivation in Spain —— 496
12.17.3	Wheat farming in India —— 496
12.18	Benefits and outcomes —— 496
12.18.1	Increased yield —— 496
12.18.2	Enhanced nutrient-use efficiency —— 496
12.18.3	Reduced environmental impact —— 497
12.19	Recommendations for safe and effective use of nanofertilizers —— 497
12.19.1	Regulatory oversight —— 497
12.19.2	Standardization and certification —— 497
12.19.3	Risk assessment and environmental monitoring —— 497
12.19.4	Education and awareness —— 498
12.20	Guidelines for application rates and timing —— 498
12.20.1	Crop-specific recommendations —— 498
12.20.2	Nutrient balance —— 498
12.20.3	Soil and environmental factors —— 498
12.21	Precautionary measures for handling and storage —— 499
12.21.1	Personal protective equipment (PPE) —— 499
12.21.2	Proper storage conditions —— 499

12.21.3	Labeling and documentation —— 499
12.22	Monitoring and evaluation strategies —— 499
12.22.1	Field trials and experimental design —— 499
12.22.2	Nutrient uptake and plant performance —— 499
12.22.3	Environmental monitoring —— 500
12.23	Awareness and education —— 500
12.23.1	Training programs and workshops —— 500
12.23.2	Information dissemination —— 500
12.23.3	Policy development and regulation —— 500
12.24	Future directions and potential impact on sustainable agriculture —— 501
12.24.1	Improving soil fertility and soil health —— 501
12.24.2	Enhancing crop productivity and profitability —— 501
12.24.3	Ensuring food security and nutrition —— 502
12.24.4	Promoting environmental quality —— 502
12.24.5	Supporting sustainable agriculture and UN SDGs —— 502
12.25	Conclusion —— 503
12.26	Key messages —— 504
	References —— 504
Chapter 13	
Harmonizin	g nutrient management through integrated approaches —— 506
13.1	Introduction —— 506
13.2	Integrated nutrient management (INM) —— 507
13.3	Understanding INM —— 508
13.3.1	Organic and inorganic nutrient sources —— 508
13.3.2	Nutrient budgeting and optimization —— 508
13.3.3	Timing and method of nutrient application —— 509
13.3.4	Balanced nutrition —— 509
13.3.5	Soil health and sustainability —— 509
13.3.6	Integration with other sustainable practices —— 509
13.4	Key components of INM approach —— 509
13.4.1	Soil testing and nutrient analysis —— 509
13.4.2	Nutrient budgeting and optimization —— 510
13.4.3	Organic and inorganic nutrient sources —— 510
13.4.4	Timing and method of nutrient application —— 511
13.5	Case studies —— 511
13.5.1	Integrated nitrogen management in rice: wheat system in Malakand
	(Khyber Pakhtunkhwa) —— 511
13.5.2	Impact of integrated use of biofertilizers, organic, and inorganic
	phosphorus sources on wheat-maize cropping system —— 513
13.6	Balanced nutrition for higher quality crops —— 514
13.6.1	Understanding the concept of balanced nutrition —— 515

XXXII — Contents

13.6.2	Macronutrients and micronutrients — 515
13.6.3	Optimal nutrient ratios for different crops —— 515
13.7	Optimal NPK ratios in agriculture —— 516
13.7.1	Understanding NPK ratios —— 516
13.7.2	The 1:1:1 ratio (balanced ratio) —— 517
13.7.3	The 2:2:1 ratio (higher nitrogen and phosphorus) —— 517
13.7.4	The 2:1:1 ratio (higher nitrogen) —— 517
13.7.5	The 1:2:1 ratio (higher phosphorus) —— 518
13.7.6	The 2:1:2 ratio (balanced with emphasis on nitrogen and
	potassium) —— 518
13.8	Factors influencing optimal NPK ratios —— 519
13.8.1	Soil type and fertility —— 519
13.8.2	Crop type and growth stage —— 519
13.8.3	Climate and weather conditions —— 519
13.8.4	Agricultural practices —— 519
13.8.5	Regional considerations —— 520
13.9	Balancing of essential nutrients for field crops —— 520
13.9.1	Nitrogen (N), phosphorus (P), and potassium (K) —— 520
13.9.2	Secondary nutrients: calcium (Ca), magnesium (Mg),
	and sulfur (S) —— 521
13.9.3	Micronutrients: iron (Fe), zinc (Zn), manganese (Mn), and others —— 521
13.10	Importance of balanced nutrient ratios for specific crops —— 522
13.10.1	Nutrient requirements during different growth stages —— 522
13.10.2	Impact on plant physiology and metabolism —— 522
13.11	Techniques and tools for assessing nutrient imbalances
	and deficiencies —— 523
13.11.1	Leaf tissue analysis —— 523
13.11.2	Soil nutrient testing —— 523
13.11.3	Visual symptoms and diagnostic tools —— 524
13.11.4	Field experiments —— 524
13.12	Biofortification —— 525
13.12.1	Definition and significance —— 525
13.12.2	Approaches of biofortification —— 525
13.12.3	Implications for improving human nutrition and addressing
	micronutrient deficiencies —— 526
13.13	Case studies on crop biofortification —— 526
13.13.1	Enhancing zinc biofortification in wheat through the integration of
	zinc, compost, and zinc-solubilizing bacteria in a wheat-maize
	cropping system in Peshawar (Khyber Pakhtunkhwa) —— 527
13.13.2	Biofortified rice varieties with enhanced iron and zinc content —— 527

13.13.3	Phosphorus and zinc fertilization improve zinc biofortification in grains and straw of coarse vs. fine rice genotypes at Malakand
	(Khyber Pakhtunkhwa) —— 527
13.13.4	Biofortified wheat with increased levels of essential
13.13.4	micronutrients —— 528
13.14	Role of INM and balanced nutrition practices —— 528
13.14.1	Impact of INM on production costs and growers' income —— 528
13.14.2	Reduction in fertilizer usage and associated expenses through INM practices —— 529
13.14.3	Enhanced crop quality and market value resulting in increased
13.17.3	income for growers —— 529
13.14.4	Economic analysis of the financial benefits of adopting INM and
	balanced nutrition —— 530
13.15	Linkages of INM with sustainable crop production —— 531
13.15.1	Integration of INM and balanced nutrition with other sustainable
	practices —— 531
13.15.2	Synergies between INM and precision agriculture, organic farming,
	and conservation agriculture —— 531
13.15.3	Contribution to soil health, environmental sustainability, and
	ecosystem services —— 532
13.15.4	Implications for sustainable agriculture and human health —— 533
13.16	Integrated nutrient management (INM): UN-SDGs —— 534
13.16.1	Improving soil fertility and soil health —— 534
13.16.2	Enhancing crop productivity and profitability —— 534
13.16.3	Ensuring food security and nutrition —— 535
13.16.4	Promoting environmental quality —— 535
13.16.5	Supporting sustainable agriculture and UN-SDGs —— 535
13.17	Conclusion —— 536
13.18	Key messages —— 537
	References —— 537
Chapter 14	
-	lobal soil threats through effective crop nutrition —— 541
14.1	Introduction —— 541
14.2	Understanding global soil threats —— 541
14.2.1	Soil erosion — 542
14.2.2	Soil salinization —— 542
14.2.3	Soil acidification —— 542
14.2.4	Soil compaction —— 542
14.2.5	Soil contamination —— 542
14.2.6	Nutrient depletion —— 543
14.2.7	Loss of soil organic matter —— 543

XXXIV — Contents

14.2.8	Desertification —— 543
14.2.9	Soil sealing —— 543
14.2.10	Soil biodiversity loss —— 543
14.2.11	Soil waterlogging —— 543
14.2.12	Climate change impacts —— 544
14.2.13	Deforestation and land use changes —— 544
14.3	Impact of soil threats on agriculture —— 544
14.3.1	Soil erosion —— 544
14.3.2	Soil salinization —— 545
14.3.3	Soil acidification —— 546
14.3.4	Soil compaction —— 546
14.3.5	Soil contamination —— 547
14.3.6	Nutrient depletion —— 547
14.3.7	Loss of soil organic matter —— 548
14.3.8	Desertification —— 548
14.3.9	Soil sealing —— 549
14.3.10	Soil biodiversity loss —— 550
14.3.11	Soil waterlogging —— 550
14.3.12	Climate change impacts —— 551
14.3.13	Deforestation and land use changes —— 551
14.4	Soil threats: challenges to soil health and sustainability —— 552
14.4.1	Soil erosion —— 552
14.4.2	Soil salinization —— 552
14.4.3	Soil acidification —— 553
14.4.4	Soil compaction —— 553
14.4.5	Soil contamination —— 553
14.4.6	Nutrient depletion —— 553
14.4.7	Loss of soil organic matter —— 554
14.4.8	Desertification —— 554
14.4.9	Soil sealing —— 554
14.4.10	Soil biodiversity loss —— 554
14.4.11	Soil waterlogging —— 555
14.4.12	Climate change impacts —— 555
14.4.13	Deforestation and land use changes —— 555
14.5	Soil threats and climate change —— 556
14.5.1	Soil erosion —— 556
14.5.2	Soil salinization —— 556
14.5.3	Soil acidification —— 556
14.5.4	Soil compaction —— 556
14.5.5	Soil contamination —— 557
14.5.6	Nutrient depletion —— 557
14.5.7	Loss of soil organic matter —— 557

14.5.8	Desertification —— 557
14.5.9	Soil sealing —— 557
14.5.10	Soil biodiversity loss —— 558
14.5.11	Soil waterlogging —— 558
14.5.12	Climate change impacts —— 558
14.5.13	Deforestation and land use changes —— 558
14.6	Sustainable management practices to control soil threats —— 559
14.6.1	Soil erosion —— 559
14.6.2	Soil salinization —— 559
14.6.3	Soil acidification —— 559
14.6.4	Soil compaction —— 560
14.6.5	Soil contamination —— 560
14.6.6	Nutrient depletion —— 560
14.6.7	Loss of soil organic matter —— 560
14.6.8	Desertification —— 560
14.6.9	Soil sealing —— 561
14.6.10	Soil biodiversity loss —— 561
14.6.11	Soil waterlogging —— 561
14.6.12	Climate change impacts —— 561
14.6.13	Deforestation and land use changes — 562
14.7	Soil threats management: the role of crop nutrition —— 562
14.8	Global strategies for nutrient management under soil threats —— 563
14.8.1	Soil amendments —— 563
14.8.2	Tailored fertilization —— 564
14.8.3	Biological solutions —— 565
14.8.4	Integrated management practices —— 566
14.8.5	Innovative technologies —— 568
14.9	Case studies and regional approaches to control soil threats —— 569
14.9.1	Controlling soil erosion with integrated nutrient management (INM)
	and integrated soil fertility management (ISFM) —— 569
14.9.2	Salinity management in arid regions: techniques like salt-tolerant
	crops, efficient irrigation practices, and gypsum application are vital
	in regions such as the Middle East and North Africa —— 571
14.9.3	Acidity management in tropical soils: liming, organic amendments,
	and acid-tolerant crops are effective in Latin America
	and Southeast Asia —— 576
14.9.4	Controlling soil compaction with integrated nutrient management
	(INM) and integrated soil fertility management (ISFM) —— 579
14.9.5	Global strategies for soil pollution control: innovations and case
	studies 581
14.9.6	Controlling nutrient depletion with integrated nutrient management
	(INM) and integrated soil fertility management (ISFM) —— 582

14.9.7	Enhancing soil organic matter: strategies to preserve and restore global soil health —— 584
14.9.8	Controlling soil desertification with integrated nutrient management (INM) and integrated soil fertility management (ISFM) —— 586
14.9.9	Controlling soil sealing with integrated nutrient management (INM) and integrated soil fertility management (ISFM) —— 588
14.9.10	Enhancing soil biodiversity through integrated nutrient management and integrated soil fertility management —— 590
14.9.11	Controlling soil waterlogging with integrated nutrient management (INM) and integrated soil fertility management (ISFM) —— 594
14.9.12	Controlling climate change impact on soil degradation with integrated nutrient management (INM) and integrated soil fertility management (ISFM) —— 596
14.9.13	Controlling deforestation and land use change impacts on soil degradation with integrated nutrient management (INM) and integrated soil fertility management (ISFM) —— 597
14.10	Integrated soil fertility management (ISFM) —— 599
14.10.1	Significance of ISFM —— 599
14.10.2	Principles of ISFM —— 600
14.10.3	Contributions of ISFM —— 607
14.10.4	A success story: integrated soil fertility management (ISFM) in Pakistan —— 607
14.11	Soil conservation —— 609
14.11.1	Significance of soil conservation on a global scale —— 609
14.11.2	Different soil conservation practices —— 610
14.11.3	Examples of soil conservation worldwide —— 610
14.12	Future directions and research needs —— 611
14.12.1	Innovative soil amendments —— 611
14.12.2	Climate-resilient practices —— 612
14.12.3	Farmer education and training —— 612
14.12.4	Policy support —— 612
14.13	Conclusion —— 613
14.14	Key messages —— 613
	References — 614

Chapter 15

Agriculture and Sustainable Development Goals: the role of crop nutrition in achieving global targets —— 617

15.1	Introduction —— 617
15.2	Goal and importance of 17 UN SDGs —— 618
15.2.1	SDG 1: No Poverty —— 618
15.2.2	SDG 2: Zero Hunger —— 618

15.2.3	SDG 3: Good Health and Well-being —— 619
15.2.4	SDG 4: Quality Education —— 619
15.2.5	SDG 5: Gender Equality —— 619
15.2.6	SDG 6: Clean Water and Sanitation —— 619
15.2.7	SDG 7: Affordable and Clean Energy —— 619
15.2.8	SDG 8: Decent Work and Economic Growth —— 620
15.2.9	SDG 9: Industry, Innovation, and Infrastructure —— 620
15.2.10	SDG 10: Reduced Inequality —— 620
15.2.11	SDG 11: Sustainable Cities and Communities —— 620
15.2.12	SDG 12: Responsible Consumption and Production —— 620
15.2.13	SDG 13: Climate Action —— 621
15.2.14	SDG 14: Life Below Water —— 621
15.2.15	SDG 15: Life on Land —— 621
15.2.16	SDG 16: Peace, Justice, and Strong Institutions —— 621
15.2.17	SDG 17: Partnerships for the Goals —— 621
15.3	Scope of Sustainable Development Goals (SDGs) —— 622
15.3.1	Addressing global challenges —— 622
15.3.2	Promoting inclusivity —— 623
15.3.3	Environmental sustainability —— 623
15.3.4	Economic prosperity —— 623
15.3.5	Health and well-being —— 623
15.3.6	Global partnerships —— 623
15.3.7	Long-term development —— 624
15.4	Key SDGs related to agriculture: role of integrated nutrient
	management and integrated soil fertility management —— 624
15.4.1	SDG 1: No Poverty —— 625
15.4.2	SDG 2: Zero Hunger —— 625
15.4.3	SDG 3: Good Health and Well-being —— 625
15.4.4	SDG 6: Clean Water and Sanitation —— 625
15.4.5	SDG 13: Climate Action —— 626
15.4.6	SDG 15: Life on Land —— 626
15.5	Role of crop nutrition to achieve SDGs —— 626
15.5.1	SDG 1 – No poverty: end poverty in all its forms everywhere —— 627
15.5.2	SDG 2 – zero hunger: end hunger, achieve food security and
	improved nutrition, and promote sustainable agriculture —— 628
15.5.3	SDG 3 – good health and well-being: ensure healthy lives and
	promote well-being for all at all ages —— 629
15.5.4	SDG 6 – clean water and sanitation: ensure availability and
	sustainable management of water and sanitation for all —— 630
15.5.5	SDG 13 – climate action: take urgent action to combat climate change
	and its impacts —— 631

XXXVIII — Contents

15.5.6 SDG 15 – Life on Land: protect, restore, and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss — 632
 15.6 Conclusion — 633
 15.7 Key messages — 633
 References — 635

Glossary —— 637

Index —— 663