Contents

Preface		٧	11	
----------------	--	---	----	--

Acknowledgm	ent —— IX
-------------	-----------

Introduction —— 1

1	From particle dynamics to the Boltzmann equation —— 3
1.1	N-Particle dynamics and modeling of rarefied gases —— 3
1.2	Distribution functions and the Liouville equation —— 4
1.3	BBGKY-hierarchy —— 7
1.4	The two-body problem and pair collisions —— 11
1.5	Scattering cross-section —— 13
1.6	Hard spheres and the Boltzmann-Grad limit —— 17
	Remarks on Chapter 1 —— 21
2	The Boltzmann equation —— 23
2.1	The Boltzmann equation for hard spheres and its generalizations —— 23
2.2	Basic properties of the Boltzmann equation —— 28
2.3	Spatially homogeneous problem —— 30
2.4	Collisional kernels —— 32
2.5	Boltzmann equations for gas mixtures — 34
	Remarks on Chapter 2 —— 36
3	Maxwell molecules and the Fourier transform —— 37
3.1	Maxwell molecules —— 37
3.2	Fourier transform of the Boltzmann equation —— 39
3.3	The spatially homogeneous Boltzmann equation for Maxwell molecules —— 41
3.4	Invariant transformations —— 49
3.5	Linearized collision operator —— 50
3.6	Eigenfunctions and eigenvalues —— 55
3.7	General solution of the linearized equation —— 59
3.8	Equations for moments —— 66
3.8.1	Appendix A. Spherical functions, the Wigner–Eckart theorem, and
	evaluation of some integrals —— 72
	Remarks on Chapter 3 —— 79
4	Radial solutions —— 81
4.1	Equation for characteristic function $\varphi(k ,t)$ —— 81
4.2	Equations for moments —— 82

4.3	Distribution functions with Maxwellian tails —— 84
4.4	Analytic properties of isotropic characteristic functions; entire functions
	of exponential type —— 86
4.5	Solution of the Cauchy problem —— 87
4.6	Stationary and self-similar solutions —— 92
4.7	Distribution functions —— 98
4.8	Exact solutions —— 102
	Remarks on Chapter 4 —— 107
5	Asymptotic problems —— 109
5.1	Formation of Maxwellian tails —— 109
5.2	Refined estimates of the normalized moments and the tail
	temperature —— 113
5.3	Application of complex Fourier transform —— 118
5.4	The general approach to the large time asymptotic problem —— 121
5.5	Convergence to equilibrium —— 127
5.6	Slow relaxation of solutions with power-like tails —— 131
5.7	A class of solutions with infinite second moment —— 137
5.8	Exact self-similar solutions —— 144
	Remarks on Chapter 5 —— 149
6	Generalized Maxwell models —— 151
6.1	The Boltzmann equation for inelastic interactions —— 151
6.2	Inelastic Maxwell model —— 153
6.3	One-dimensional model and its exact self-similar solution —— 156
6.4	Self-similar solutions to the three-dimensional inelastic Maxwell model —— 161
6.5	Uniqueness of the self-similar profile —— 167
6.6	Asymptotic property of self-similar solutions —— 171
6.7	Distribution functions and power-like tails —— 175
6.8	Multi-linear Maxwell models —— 179
6.9	Self-similar asymptotics —— 186
6.10	Other applications of Fourier transform to the Boltzmann
	equation —— 190
	Remarks on Chapter 6 —— 194
7	Boltzmann equation and hydrodynamics beyond Navier–Stokes —— 195
7.1	Boltzmann equation for small Knudsen numbers —— 195
7.2	Hilbert and Chapman-Enskog methods —— 197
7.3	Navier-Stokes equations —— 202
7.4	Burnett equations —— 206
7.5	Ill-posedness of Burnett equations —— 210

7.6	General method of regularization —— 212
7.7	Linearized problem —— 214
7.8	Asymptotic expansion for small Knudsen numbers —— 217
7.9	Accuracy of equations of hydrodynamics and connection with the
	Chapman-Enskog expansion —— 220
7.10	The non-linear case: generalized Burnett equations —— 224
7.11	Hyperbolicity and stability of GBEs —— 228
7.12	Concluding remarks —— 233

Bibliography --- 235

Index —— 243