Contents

Preface --- V

Introduction — 1

1	Derivation of the Landau equation —— 4
1.1	From Boltzmann equation to Landau equation —— 4
1.2	Generalized Landau equation —— 11
1.3	Transport cross-section of scattering in a weak central field —— 13
1.4	From BBGKY hierarchy to Landau equation —— 20
1.5	General comments on the Landau-type equations —— 25
	Remarks on Chapter 1 —— 27
2	Radially symmetric Landau equation and its models —— 29
2.1	General properties of the Landau equation —— 29
2.2	Radial solutions and related models —— 32
2.3	Competition of diffusion and friction force —— 34
2.4	Exactly solvable model —— 38
2.5	Solutions of the model equation —— 40
2.6	Models with variable diffusion coefficients —— 43
2.7	Moment equations for the Landau equation —— 47
2.8	Estimates of exponential moment $I_3(\lambda, t)$ and generalizations — 51
2.9	Asymptotic solutions and high-energy tails —— 55
	Remarks on Chapter 2 —— 59
3	Numerical methods for the Landau equation —— 60
3.1	Landau equation in Fokker–Planck form —— 60
3.2	Brief review of numerical methods —— 60
3.3	The completely conservative difference schemes for the
	Landau–Fokker–Planck equation —— 64
3.4	Example of the difference scheme for the generalized Landau
	equation —— 66
3.5	Monte Carlo methods for LFPE —— 73
3.6	General stochastic method —— 76
	Remarks on Chapter 3 —— 82
4	Applications of the Vlasov–Landau equation —— 83
4.1	Vlasov–Landau equation for weakly interacting systems —— 83
4.2	Vlasov–Poisson–Landau equation for plasma —— 86
4.3	Asymptotic solutions of VPLE —— 89
4.4	Behavior of $E^{\varepsilon}(x,t)$ for $\varepsilon \to 0$ — 91

4.5	Well-posedness of limiting kinetic equation —— 93
4.6	Linearized Vlasov–Poisson equation —— 96
4.7	More on vibrations of electric field —— 104
4.8	The case of strong oscillations —— 109
4.9	Numerical examples —— 114
4.10	Conclusions —— 123
	Remarks on Chapter 4 —— 124
5	Discrete models of the Boltzmann equation —— 125
5.1	Introduction to discrete velocity models of the Boltzmann equation —— 125
5.2	Construction of normal discrete models —— 127
5.3	General discrete kinetic models —— 130
5.4	Normal DKMs with given conservation laws —— 132
5.5	On classification of normal discrete models of the Boltzmann
	equation —— 134
	Remarks on Chapter 5 —— 136
6	Discrete models of the Boltzmann equation and dynamical systems —— 137
6.1	General ideas —— 137
6.2	Statement of the problem —— 138
6.3	DVM as dynamical system —— 141
6.4	Linearized equation —— 142
6.5	Indices of stationary points —— 147
6.6	Applications to half-space problems —— 150
6.7	The shock wave problem —— 153
6.8	Assumptions and main results —— 154
6.9	Transformation of the problem and sketch of the proof —— 156
	Remarks on Chapter 6 —— 160
7	General Boltzmann-type equations —— 161
7.1	Generalization of the Boltzmann equation —— 161
7.2	Conservation laws and generalized <i>H</i> -theorem —— 164
7.3	Nordheim–Uehling–Uhlenbeck equation and wave kinetic equation —— 166
7.4	Discrete kinetic models —— 168
7.5	Properties of discrete models —— 170
7.6	Some transformations of equations and initial data —— 173
7.7	Convergence to equilibrium for discrete models of WKE: Formulation of the main result —— 173
7.8	Existence and uniqueness of global nonnegative solutions —— 175
7.9	Existence of unique stationary solution —— 178
7.10	Properties of the stationary solution —— 180
7.11	Proof of convergence to equilibrium —— 181
	•

7.12 On approximation of Boltzmann-type equations by discrete kinetic

models —— 184

7.13 Concluding remarks on Chapter 7 — 189

Bibliography —— 191

Index — 199