

Foreword *xiii*

Part I Principles 1

1	Predictive Power of Biomolecular Simulations	3
	<i>Vojtěch Spiwok</i>	
1.1	Design of Biomolecular Simulations	4
1.2	Collective Variables and Trajectory Clustering	6
1.3	Accuracy of Biomolecular Simulations	8
1.4	Sampling	10
1.5	Binding Free Energy	14
1.6	Convergence of Free Energy Estimates	16
1.7	Future Outlook	20
	References	21
2	Molecular Dynamics-Based Approaches Describing Protein Binding	29
	<i>Andrea Spitaleri and Walter Rocchia</i>	
2.1	Introduction	29
2.1.1	Protein Binding: Molecular Dynamics Versus Docking	30
2.1.2	Molecular Dynamics – The Current State of the Art	31
2.2	Protein–Protein Binding	32
2.3	Protein–Peptide Binding	34
2.4	Protein–Ligand Binding	36
2.5	Future Directions	38
2.5.1	Modeling of Cation-p Interactions	38
2.6	Grand Challenges	39
	References	39

3	Modeling Ligand–Target Binding with Enhanced Sampling Simulations 45
	<i>Federico Comitani and Francesco L. Gervasio</i>
3.1	Introduction 45
3.2	The Limits of Molecular Dynamics 46
3.3	Tempering Methods 47
3.4	Multiple Replica Methods 48
3.5	Endpoint Methods 50
3.5.1	Alchemical Methods 50
3.6	Collective Variable-Based Methods 51
3.6.1	Metadynamics 52
3.7	Binding Kinetics 57
3.8	Conclusions 59
	References 60
4	Markov State Models in Drug Design 67
	<i>Bettina G. Keller, Stevan Aleksić, and Luca Donati</i>
4.1	Introduction 67
4.2	Markov State Models 68
4.2.1	MD Simulations 68
4.2.2	The Molecular Ensemble 69
4.2.3	The Propagator 69
4.2.4	The Dominant Eigenspace 70
4.2.5	The Markov State Model 72
4.3	Microstates 75
4.4	Long-Lived Conformations 77
4.5	Transition Paths 79
4.6	Outlook 81
	Acknowledgments 82
	References 82
5	Monte Carlo Techniques for Drug Design: The Success Case of PELE 87
	<i>Joan F. Gilabert, Daniel Lecina, Jorge Estrada, and Victor Guallar</i>
5.1	Introduction 87
5.1.1	First Applications 88
5.1.2	Free Energy Calculations 88
5.1.3	Optimization 88
5.1.4	MC and MD Combinations 89
5.2	The PELE Method 90
5.2.1	MC Sampling Procedure 91
5.2.2	Ligand Perturbation 91
5.2.3	Receptor Perturbation 91
5.2.4	Side-Chain Adjustment 93

5.2.5	Minimization	93
5.2.6	Coordinate Exploration	93
5.2.7	Energy Function	94
5.3	Examples of PELE's Applications	94
5.3.1	Mapping Protein Ligand and Biomedical Studies	94
5.3.2	Enzyme Characterization	96
	Acknowledgments	97
	References	97

6 Understanding the Structure and Dynamics of Peptides and Proteins Through the Lens of Network Science 105

Mathieu Fossepré, Laurence Leherte, Aatto Laaksonen, and Daniel P. Vercauteren

6.1	Insight into the Rise of Network Science	105
6.2	Networks of Protein Structures: Topological Features and Applications	107
6.2.1	Topological Features and Analysis of Networks: A Brief Overview	107
6.2.2	Centrality Measures and Protein Structures	110
6.2.3	Software	114
6.3	Networks of Protein Dynamics: Merging Molecular Simulation Methods and Network Theory	117
6.3.1	Molecular Simulations: A Brief Overview	117
6.3.2	How Can Network Science Help in the Analysis of Molecular Simulations?	118
6.3.3	Software	119
6.4	Coarse-Graining and Elastic Network Models: Understanding Protein Dynamics with Networks	120
6.4.1	Coarse-Graining: A Brief Overview	120
6.4.2	Elastic Network Models: General Principles	123
6.4.3	Elastic Network Models: The Design of Residue Interaction Networks	124
6.5	Network Modularization to Understand Protein Structure and Function	128
6.5.1	Modularization of Residue Interaction Networks	128
6.5.2	Toward the Design of Mesoscale Protein Models with Network Modularization Techniques	130
6.6	Laboratory Contributions in the Field of Network Science	131
6.6.1	Graph Reduction of Three-Dimensional Molecular Fields of Peptides and Proteins	132
6.6.2	Design of Multiscale Elastic Network Models to Study Protein Dynamics	135
6.7	Conclusions and Perspectives	140
	Acknowledgments	142
	References	142

7 From Computers to Bedside: Computational Chemistry Contributing to FDA Approval 165
Christina Athanasiou and Zoe Cournia

7.1 Introduction 165
7.2 Rationalizing the Drug Discovery Process: Early Days 166
7.2.1 Captopril (Capoten[®]) 167
7.2.2 Saquinavir (Invirase[®]) 167
7.2.3 Ritonavir (Norvir[®]) 168
7.3 Use of Computer-Aided Methods in the Drug Discovery Process 168
7.3.1 Ligand-Based Methods 169
7.3.1.1 Overlay of Structures 169
7.3.1.2 Pharmacophore Modeling 171
7.3.1.3 Quantitative Structure–Activity Relationships (QSAR) 172
7.3.2 Structure-Based Methods 173
7.3.2.1 Molecular Docking – Virtual Screening 175
7.3.2.2 Flexible Receptor Molecular Docking 179
7.3.2.3 Molecular Dynamics Simulations 179
7.3.2.4 *De Novo* Drug Design 180
7.3.2.5 Protein Structure Prediction 181
7.3.2.6 Rucaparib (Zepatier[®]) 184
7.3.3 *Ab Initio* Quantum Chemical Methods 185
7.4 Future Outlook 186
References 190

8 Application of Biomolecular Simulations to G Protein–Coupled Receptors (GPCRs) 205
Mariona Torrens-Fontanals, Tomasz M. Stepniewski, Ismael Rodríguez-Espigares, and Jana Selent

8.1 Introduction 205
8.2 MD Simulations for Studying the Conformational Plasticity of GPCRs 207
8.2.1 Challenges in GPCR Simulations: The Sampling Problem and Simulation Timescales 208
8.2.2 Making Sense Out of Simulation Data 209
8.3 Application of MD Simulations to GPCR Drug Design: Why Should We Use MD? 210
8.4 Evolution of MD Timescales 214
8.5 Sharing MD Data via a Public Database 216
8.6 Conclusions and Perspectives 216
Acknowledgments 217
References 217

9 Molecular Dynamics Applications to GPCR Ligand Design 225
Andrea Bortolato, Francesca DeFlorian, Giuseppe Deganutti, Davide Sabbadin, Stefano Moro, and Jonathan S. Mason

9.1 Introduction 225

9.2	The Role of Water in GPCR Structure-Based Ligand Design	226
9.2.1	WaterMap and WaterFLAP	228
9.3	Ligand-Binding Free Energy	230
9.4	Ligand-Binding Kinetics	233
9.4.1	Supervised Molecular Dynamics (SuMD)	235
9.4.2	Adiabatic Bias Metadynamics	238
9.5	Conclusion	241
	References	242
10	Ion Channel Simulations	247
	<i>Saurabh Pandey, Daniel Bonhenry, and Rudiger H. Ettrich</i>	
10.1	Introduction	247
10.2	Overview of Computational Methods Applied to Study Ion Channels	248
10.2.1	Homology Modeling	248
10.2.2	All-atom Molecular Dynamics Simulations	249
10.2.2.1	Force Fields	250
10.2.3	Methods for Calculation of Free Energy	251
10.2.3.1	Free Energy Perturbation	251
10.2.3.2	Umbrella Sampling	251
10.2.3.3	Metadynamics	252
10.2.3.4	Adaptive Biased Force Method	252
10.3	Properties of Ion Channels Studied by Computational Modeling	253
10.3.1	A Refined Atomic Scale Model of the <i>Saccharomyces cerevisiae</i> K ⁺ -translocation Protein Trk1p	253
10.3.2	Homology Modeling, Docking, and Mutagenesis Studies of Human Melatonin Receptors	254
10.3.3	Selectivity and Permeation in Voltage-Gated Sodium (Na _V) Channels	254
10.3.4	Study of Ion Conduction Mechanism, Favorable Translocation Path, and Ion Selectivity in KcsA Using Free Energy Perturbation and Umbrella Sampling	257
10.3.5	Ion Conductance Calculations	260
10.3.5.1	Voltage-Dependent Anion Channel (VDAC)	261
10.3.5.2	Calculation of Ion Conduction in Low-Conductance GLIC Channel	261
10.3.6	Transient Receptor Potential (TRP) Channels	263
10.4	Free Energy Methods Applied to Channels Bearing Hydrophobic Gates	264
10.5	Conclusion	270
	Acknowledgments	271
	References	271
11	Understanding Allostery to Design New Drugs	281
	<i>Giulia Morra and Giorgio Colombo</i>	
11.1	Introduction	281
11.2	Protein Allostery: Basic Concepts and Theoretical Framework	282
11.2.1	The Classic View of Allostery	283

11.2.2	The Thermodynamic Two-State Model of Allostery	283
11.2.3	From Thermodynamics to Protein Structure and Dynamics	285
11.2.4	Entropy in Allostery: The Ensemble Allostery Model	287
11.3	Exploiting Allostery in Drug Discovery and Design	288
11.3.1	Computational Prediction of Allosteric Behavior and Application to Drug Discovery	288
11.3.2	Identification of Allosteric Binding Sites Through Structural and Dynamic Approaches	289
11.4	Chaperones	291
11.5	Kinases	293
11.6	GPCRs	294
11.7	Conclusions	296
	References	296
12	Structure and Stability of Amyloid Protofibrils of Polyglutamine and Polyasparagine from Molecular Dynamics Simulations	301
	<i>Viet Hoang Man, Yuan Zhang, Christopher Roland, and Celeste Sagui</i>	
12.1	Introduction	301
12.2	Polyglutamine Protofibrils and Aggregates	303
12.2.1	Investigations of Oligomeric Q ₈ Structures	303
12.2.2	Time Evolution, Steric Zippers, and Crystal Structures of 4 × 4 Q ₈ Aggregates	306
12.2.3	Monomeric Q ₄₀ Protofibrils	308
12.3	Amyloid Models of Asparagine (N) and Glutamine(Q)	311
12.3.1	Initial Structures	313
12.3.2	Monomeric PolyQ β Hairpins Are More Stable than PolyN Hairpins	314
12.3.3	N-rich Oligomers Are Most Stable in Class 1 Steric Zippers with 2-by-2 Interdigitation	315
12.3.4	PolyQ Oligomers Are Most Stable in Antiparallel Stranded β Sheets with 1-by-1 Steric Zippers	316
12.3.5	PolyQ Structures Show Higher Stability than Most Stable PolyN Structures	317
12.3.6	Thermodynamic Considerations of Aggregate Formation	318
12.4	Summary	319
	Acknowledgments	320
	References	320
13	Using Biomolecular Simulations to Target Cdc34 in Cancer	325
	<i>Miriam Di Marco, Matteo Lambrughi, and Elena Papaleo</i>	
13.1	Background	325
13.2	Families of E2 Enzymes	327
13.3	Cdc34 Protein Sequence and Structure	328
13.4	Cdc34 Heterogeneous Conformational Ensemble in Solution	329

- 13.5 Long-Range Communication in Family 3 Enzymes: A Structural Path from the Ub-Binding Site to the E3 Recognition Site 330
- 13.6 Cdc34 Modulation by Phosphorylation: From Phenotype to Structure 331
- 13.7 The Dual Role of the Acidic Loop of Cdc34: Regulator of Activity and Interface for E3 Binding 332
- 13.8 Different Strategies to Target Cdc34 with Small Molecules 333
- 13.9 Conclusions and Perspectives 334
- Acknowledgments 336
- References 336

Index 343