George Pedrick

A First Course in Analysis

With 62 Illustrations

Springer-Verlag
New York Berlin Heidelberg London Paris
Tokyo Hong Kong Barcelona Budapest

Contents

Preface	vii
Notations and Conventions	xv
Introduction	xix
BACKGROUND	
Number Systems	1
§1. Counting: The Natural Numbers §2. Measurement: The Rational Numbers The Axioms of Ordered Fields	1 13 19
§3. Decimal Representation. Irrationals	25
PART I ANALYSIS	35
CHAPTER 1 Approximation: The Real Numbers	37
 §1. Least Upper Bound §2. Completeness. Nested Intervals §3. Bounded Monotonic Sequences §4. Cauchy Sequences §5. The Real Number System 	38 40 42 47 50
§6. Countability Appendix. The Fundamental Theorem of Algebra. Complex Numbers	52 55

CHAPTER 2	
The Extreme-Value Problem	64
§1. Continuity, Compactness, and the Extreme-Value Theorem	6.5
§2. Continuity of Rational Functions. Limits of Sequences	72
Appendix. Completion of the Proof of the Fundamental Theorem	
of Algebra	76
§3. Sequences and Series of Reals. The Number e	78
§4. Sets of Reals. Limits of Functions	90
CHAPTER 3	
Continuous Functions	97
§1. Implicit Functions. $\sqrt[n]{x}$. The Intermediate-Value Theorem	97
§2. Inverse Functions. x' for $r \in \mathbb{Q}$	101
§3. Continuous Extension. Uniform Continuity. The Exponential	
and Logarithm	104
§4. The Elementary Functions	109
§5. Uniformity. The Heine-Borel Theorem	112
§6. Uniform Convergence. A Nowhere Differentiable Continuous Function	118
§7. The Weierstrass Approximation Theorem	124
Summary of the Main Properties of Continuous Functions	128
Appendix. A Space-Filling Continuous Curve	128
<i>j</i> -	
PART II	171
FOUNDATIONS OF CALCULUS	131
CHAPTER 4	
Differentiation	133
Differentiation	13.
§1. Differential and Derivative. Tangent Line	135
§2. The Foundations of Differentiation	140
§3. Curve Sketching. The Mean-Value Theorem	146
§4. Taylor's Theorem	154
§5. Functions Defined Implicitly	160
CHAPTER 5	
Integration	169
•	
§1. Definitions. Darboux Theorem	171
§2. Foundations of Integral Calculus. The Fundamental Theorem	177
of Calculus 1. The Nature of Integrability Laborance Theorem	179 189
§3. The Nature of Integrability. Lebesgue's Theorem	193
§4. Improper Integral §5. Arclength. Bounded Variation	200
A Word About the Stielties Integral and Measure Theory	214

Contents	
CHAPTER 6	
Infinite Series	
§1. The Vibrating String	
§2. Convergence: General Considerations	
§3. Convergence: Series of Positive Terms	
§4. Computation with Series	
§5. Power Series	
§6. Fourier Series	

Index

xiii