Ilya J. Bakelman

Convex Analysis and Nonlinear Geometric Elliptic Equations

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

Contents

Part I. Elements of Convex Analysis	1
Chapter 1. Convex Bodies and Hypersurfaces	3
§1. Convex Sets in Finite-Dimensional Euclidean Spaces	3 3
Convex Hull 1.3. The Properties of Convex Sets in Linear Topological Spaces 1.4. Euclidean Space E^n 1.5. The Simple Figures in E^n 1.6. Spherical Convex Sets 1.7. Starshapedness of Convex Bodies 1.8. Asymptotic Cone 1.9. Complete Convex Hypersurfaces in E^{n+1}	7 8 9 10 11 12
§2. Supporting Hyperplanes	14
§3. Convex Hypersurfaces and Convex Functions 3.1. Convex Hypersurfaces and Convex Functions 3.2. Test of Convexity of Smooth Functions 3.3. Convergence of Convex Functions 3.4. Convergence in Topological Spaces 3.5. Convergence of Convex Bodies and Convex Hypersurfaces	16 19 20 21
§4. Convex Polyhedra. 4.1. Definitions. Description of Convex Polyhedra by the Convex H of Their Vertices. 4.2. Convex Hull of a Finite System of Points. 4.3. Approximation of Closed Convex Hypersurfaces by Closed Convex Polyhedra.	ull 24 26
§5. Integral Gaussian Curvature	29 33
§6. Supporting Function	36
Chapter 2. Mixed Volumes. Minkowski Problem. Selected Global Problems in Geometric Partial Differential Equations	54

§7.	The Minkowski Mixed Volumes	. 54
•	7.1. Linear Combinations of Sets in E^{n+1}	
	7.2. Exercises and Problems to Subsection 7.1	
	7.3. Minkowski Mixed Volumes for Convex Polyhedra	. 59
	7.4. The Minkowski Mixed Volumes	
	for General Bounded Convex Bodies	. 63
	7.5. The Brunn-Minkowski Theorem.	
	The Minkowski Inequalities	66
	7.6. Alexandrov's and Fenchel's Inequalities	. 72
22	Selected Global Problems	c
	Geometric Partial Differential Equations	75
0,0	8.1. Minkowski's Problem for Convex Polyhedra in E^{n+1}	
	8.2. The Classical Minkowski Theorem	. ro
	8.3. General Elliptic Operators and Equations	
	8.4. Linear Elliptic Operators and Equations	
	8.5. Quasilinear Elliptic Operators and Equations	
	8.6. The Classical Monge-Ampere Equations	
	8.7. Differential Equations in Global Problems	
	of Differential Geometry	. 90
	8.8. The Classical Maximum Principles	
	for General Elliptic Equations	95
	8.9. Hopf's Maximum Principle for Uniformly Elliptic	
	Linear Equations	. 98
	8.10. Uniqueness Theorem	
	for General Nonlinear Elliptic Equations	100
	8.11. The Maximum Principle	
	for Divergent Quasilinear Elliptic Equations	103
,	8.12. Uniqueness Theorem for Isometric Embeddings	
	of Two-dimensional Riemannian Metrics in E^3	105
Pa	rt II. Geometric Theory of Elliptic Solutions	
of	Monge-Ampere Equations	109
	apter 3. Generalized Solutions of N-Dimensional	
IVIC	onge-Ampere Equations	113
§ <i>9</i> .	Normal Mapping and R-Curvature of Convex Functions	113
	9.1. Some Notation	
	9.2. Normal Mapping	113
	9.3. Convergence Lemma of Supporting Hyperplanes	114
	9.4. Main Properties of the Normal Mapping	
	of a Convex Hypersurface	
	9.5. Proofs	
	9.6. R-curvature of convex functions	118
	9.7 Weak convergence of R-curvatures	118

	e Properties of Convex Functions Connected	
	eir R-Curvature	
	The Comparison and Uniqueness Theorems	
10.2.	Geometric Lemmas and Estimates	. 125
10.3.	The Border of a Convex Function	. 127
10.4.	Convergence of Convex Functions in a Closed Convex Domain.	
	Compactness Theorems	. 129
811 Ge	ometric Theory of the Monge-Ampere Equations	
$\det(u_{i:i})$	= arphi(x)/R(Du).	. 146
11.1.	Introduction. Obstructions and Necessary Conditions	
	of Solvability for the Dirichlet Problem	146
11.2.	Generalized and Weak Solutions for Equation (11.1)	. 148
	The Dirichlet Problem in the Set of Convex Functions	
	$Q(A_1,A_2,\ldots,A_k)$. 150
11.4.	Existence and Uniqueness of Weak Solutions	
	of the Dirichlet Problem for Monge-Ampere Equations	
	$\det(u_{ij}) = \varphi(x)/R(Du) \dots \dots$. 153
11.5.	The Inverse Operator for the Dirichlet Problem	
	Hypersurfaces with Prescribed Gaussian Curvature	
of Mong 12.1. 12.2.	the Dirichlet Problem for Elliptic Solutions $x_i = Ampere$ Equations $Det(u_{ij}) = f(x, u, Du)$. The First Main Existence Theorem for the Dirichlet Problem (12.1–2). Existence of at Least One Generalized Solution of the Dirichlet Problem for Equations $det(u_{ij}) = f(x, u, Du)$. Existence of Several Different Generalized Solutions for the Dirichlet Problem (12.23–24).	. 167 . 170
and Ge	r 4. Variational Problems meralized Elliptic Solutions ge—Ampere Equations	. 182
-	roduction. The Main Functional	
	Statement of Problems	
	Preliminary Considerations	
13.3.	The Functional $I_H(u)$ and its Properties	. 184
§14. Var	riational Problem for the Functional $I_H(u)$. 189
14.1.	Bilateral Estimates for $I_H(u)$. 189
	Main Theorem about the Functional $I_H(u)$	
	7	
310. DU 15.1	al Convex Hypersurfaces and Euler's Equation	10/
	Dual Convex Hypersurfaces	

15.3.	Expression of the Functional $I_H(u)$ by Means of Dual Convex Hypersurfaces
15.4.	Expression of the Variation of $I_H(u)$
	r 5. Non-Compact Problems for Elliptic Solutions ge—Ampere Equations204
of the Se 16.1.	roduction. The Statement econd Boundary Value Problem
	The Statement of the Second Boundary Value Problem205 e Second Boundary Value Problem
for Mon	ge-Ampere Equations $\det(u_{ij}) = \frac{g(x)}{R(Du)}$
17.2.	of the Second Boundary Value Problem
§18. The	e Second Boundary Value Problem
for Gene 18.1.	tral Monge-Ampere Equations
18.3.	and the Scheme of its Proof
18.4.	The Proof of Theorem 18.1
	r 6. Smooth Elliptic Solutions ge-Ampere Equations226
-	e N-Dimensional Minkowski Problem
	A Priori Estimates for the Radii of Normal Curvature
19.3.	of a Convex Hypersurface
19.4.	An A Priori Estimate for the Third Derivatives of a Support Function of a Convex Hypersurface
19.5.	The Proof of Theorem 19.3
	e Dirichlet Problem for Smooth Elliptic Solutions mensional Monge-Ampere Equations241
	The Uniqueness and Comparison Theorems
	C^0 -Estimates for Solutions $u(x) \in C^2(\overline{G})$ of the Dirichlet Problem (20.2) by Subsolutions
20.3.	Geometric Estimates of Convex Solutions for Monge-Ampere Equations

20.4. Geometric Estimates of the Gradient of Convex Solutions
for Monge–Ampere Equations
20.5. The Dirichlet Problem
for the Monge-Ampere Equation $\det(u_{ij}) = \psi(x) \dots 264$
20.6. A Priori Estimates for Derivatives up to Second Order 266
20.7. Calabi's Interior Estimates for the Third Derivatives 271
20.8. One-Sided Estimates at the Boundary
for some Third Derivatives275
20.9. An Important Lemma
20.10. Completion of the Proof of Theorem 20.8
20.11. More General Monge-Ampere equations
Part III. Geometric Methods in Elliptic Equations of Second Order. Applications to Calculus of Variations, Differential Geometry and Applied Mathematics
Chapter 7. Geometric Concepts and Methods
in Nonlinear Elliptic Euler-Lagrange Equations
§21. Geometric Constructions. Two-Sided C ⁰ -Estimates of Functions with Prescribed Dirichlet Data
21.1. Geometric Constructions
21.2. Convex and Concave Supports
of Functions $u(x) \in W_2^{n}(\overline{B}) \cap C(\overline{B})$
21.3. Two-sided C^0 -Estimates for Functions $u(x) \in W_2^n(B) \cap C(\overline{B}) \dots 290$
§22. Applications to the Dirichlet Problem
for Euler-Lagrange Equations297
§23. Applications to Calculus of Variations, Differential Geometry
and Continuum Mechanics
23.1. Applications to Calculus of Variations
23.2. Applications to Differential Geometry
23.3. Applications to Continuum Mechanics
§24. C^2 -Estimates for Solutions
of General Euler-Lagrange Elliptic Equations
24.1. Introduction
24.2. Monge–Ampere Generators
24.3. Assumptions Related to General Euler-Lagrange Equations 323
24.4. Two-sided Estimates for Solutions
of Nonlinear Elliptic Euler-Lagrange Equations328
24.5. The Second Type of C^0 -Estimates for Solutions
for General Elliptic Euler-Lagrange Equations
Chapter 8. The Coometrie Maximum Principle
Chapter 8. The Geometric Maximum Principle for General Non-Divergent Quasilinear Elliptic Equations 339

§25. The	First Geometric Maximum Principle for Solutions	
of the D	irichlet Problem for General Quasilinear Equations34	11
25.1.	The First Geometric Maximum Principle	
	for General Quasilinear Elliptic Equations	
	and Linear Elliptic Equations of the Form 34	11
25.2.	The Improvement of Estimates (25.16) for Solutions	
	of General Quasilinear Elliptic Equations Depending	
	on Properties of the Functions	
	$\det(a_{ik}(x,u,p))$ and $b(x,u,p)$	32
25.3.	The Improvement of Estimate (25.106-107) and (25.113)	
	for Solutions $u(x) \in W_2^n(B) \cap C(\overline{B})$ of the Dirichlet Problem	
	for Euler-Lagrange Equations	7
25.4.	Final Remarks Relating to Subsections 25.2 and 25.3	30
25.5.	Polar Reciprocal Convex Bodies. Estimates and Majorants	
	for Solutions of the Dirichlet Problems (25.119–120)	
	and $(25.186-187)$ depending on $vol(CoB)$	30
SOC Th	Coomatria Marimum Principla	
-	e Geometric Maximum Principle eral Quasilinear Elliptic Equations	
	vation and Development)	21
	The Main Assumptions	
	Concepts and Notations Related to Solutions	w
20.2.	of the Dirichlet Problem (26.1–2)	2G
26.3	The Development of Techniques Related)U
20.5.	to Functions $Q_{\alpha}(p)$ and $R(p)$	22
26.4	The Main Estimates for Solutions of Problem (26.1–2)	ю
20.4.	if $R(p)$ Satisfies (26.9-a)	חנ
26.5	Uniform Estimates for Solutions	,,
20.0.	of the Dirichlet Problem (26.1–2) (Continuation	
	and Development of Subsection (26.4)	15
26.6	Comments to the Modified Condition C.2	
20.0.	Comments to the Modified Condition C.2	-
	ntwise Estimates for Solutions of the Dirichlet	
Problem	for General Quasilinear Elliptic Equations)5
	Integral $I(\lambda, \alpha, x_0)$	
	The Mapping's Mean	
	The General Lemma of Convexity 40	9
27.4.	The Pointwise Estimates for Solutions	
	of the Dirichlet Problem (27.1-2)	.3
500 0-	mments to Chanton & The Manimum Principles	
-	nments to Chapter 8. The Maximum Principles	11
ın Globa	l Problems of Differential Geometry	:1 1
	Comments to Chapter 8	ł1
28.2.	Estimates for Solutions of Overgilinear Elliptic Equations Connected	
	of Quasilinear Elliptic Equations Connected with Problems of Global Geometry 44	ı۰

§29. The Dirichlet Problem for Quasilinear Elliptic Equations	446
29.1. Introduction	
29.2. Estimates for the Gradient on the Boundary	
of ∂B . (The Method of Global Barriers)	450
29.3. Estimates of the Gradient	
of Solutions on the Boundary.	
(The Method of Convex Majorants)	. 465
29.4. Estimates of the Gradient of Solutions on the Boundary.	
(The Method of Support Hyperplanes)	. 473
29.5. Global Gradient Estimates for Solutions	
of Quasilinear Elliptic Equations	. 4 88
Bibliography	497
Index	. 509