

Max-Olivier Hongler

Chaotic and Stochastic Behaviour in Automatic Production Lines

Springer-Verlag

Berlin Heidelberg New York

London Paris Tokyo

Hong Kong Barcelona

Budapest

Contents

1	Introduction	1
2	Vibratory Feeding	5
2.1	The Basic Dynamical Model	6
2.2	Solution of the Impact Equations	10
2.3	Approximate Mapping for Weakly Dissipative Cases	14
2.4	Plastic Modes	17
2.5	Transport Rates	22
2.6	Conclusions and Summary	25
3	Part Orienting Devices	27
3.1	The General Problem of Selecting Parts in a Correct Orientation	27
3.2	The Device Selection and Ordering Problem. General Situation	28
3.3	Part Orienting System for Parts with Only Two Possible Orientations	31
3.4	Summary and Perspectives	37
4	Random Insertion Mechanisms	39
4.1	High Precision Automatic Insertion	39
4.2	Brownian and Related Motions in the Plane	42
4.3	Discussion of the Analytical Results in the Robotic Context	48
4.4	Exploration with Coloured Noise	50
4.5	Experimental Results	53
4.6	Conclusions	56
5	Stochastic Buffered Flows	57
5.1	Introduction	57
5.2	The General Model	57
5.3	The Boundary-Free Model and Its Solution	59
5.4	Examples	63
5.5	Discussion of the Transient Analysis of the Boundary-Free Model	66
5.6	Case Study from a Cigarette Production Unit	68
5.7	Permanent Regimes	69
5.8	Aggregation Method	72
5.9	Summary and Conclusions	76
6	General Conclusions	79
7	References	81