Contents

Part I Electron Waves, Ho	olography, and Quantum Mechanics
Electron Holography and Its Applications to the Observat By A. Tonomura (With 9 Figures)	ion of the Microscopic World
Studies on Domain States of Magne by Electron Holography By T. Hirayama, Q. Ru, J. Chen, T. (With 2 Figures)	
Electron and Ion Microscopy Without By HW. Fink and H. Schmid (With	ut Lenses n 7 Figures)
Measurability of the Schrödinger Wa By Y. Aharonov and L. Vaidman .	ve
Quantum Measurement and Fluctuat By A. Shimizu (With 2 Figures)	ions in Nanostructures
Part II Electron Transport	1: Low-Dimensional Effects
Control of Electron Scattering and (via Wave-Function Engineering in N By H. Sakaki (With 5 Figures)	
Quasi-Ballistic Quantum-Wire Trans By K. Ismail (With 3 Figures)	istors
Quantum Electron-Wave Transport is By T. Ando (With 6 Figures)	•
Quantum Mechanical Analysis of Re in Four-Terminal Junctions By K. Amemiya and K. Kawamura	

Phase Shifts and the Friedel Sum Rule Applied to the Asymmetric Tunneling Device By T. Mizuno, M. Eto, and K. Kawamura (With 3 Figures)	84
Transport Through a Quantum Dot Far from Equilibrium By F. Yamaguchi and K. Kawamura (With 2 Figures)	88
Part III Electron Transport 2: Single-Electron and Spin Effects	
Photon-Assisted Tunneling Through a Quantum Dot: Theory and Experiment By L.P. Kouwenhoven, S. Jauhar, K. McCormick, D. Dixon, P.L. McEuen, Yu.V. Nazarov, N.C. van der Vaart, and C.T. Foxon (With 7 Figures)	95
Envelope Modulation of Coulomb-Blockade Oscillations in Magnetic Fields By T. Sakamoto, S.W. Hwang, Y. Nakamura, and K. Nakamura (With 3 Figures)	107
Suppression of Single-Electron Charging Effects in Liquid-Crystal Molecules Due to Infrared Irradiation By H. Nejoh, V.A. Tkachenko, M. Tsukada, and M. Aono (With 6 Figures)	112
Spontaneous Spin Polarization Due to Electron-Electron Interaction in Quantum Wires By G. Fasol and H. Sakaki (With 7 Figures)	121
Part IV Optical Processes and Microcavity Effects	
Terahertz, Photon-Assisted Tunneling in Semiconductor Nanostructures By S.J. Allen, B.J. Keay, P.S.S. Guimarães, J.P. Kaminski, P.F. Hopkins, and A.C. Gossard (With 6 Figures)	133
Exciton Radiative Lifetime in GaAs Quantum Wires: Wire-Width Dependence By T. Kono, S. Tsukamoto, F. Sogawa, Y. Nagamune, M. Nishioka, and Y. Arakawa (With 1 Figure)	140
Magneto-Optical Effect in GaAs Quantum Wires: Wire-Width Dependence By Y. Nagamune, T. Kono, S. Tsukamoto, M. Nishioka, Y. Arakawa, K. Uchida, and N. Miura (With 2 Figures)	145
Optical Gain Due to Excitons in Quantum Wires By S. Nojima (With 2 Figures)	148
Dynamical Processes of Lasing in CuCl Nanocrystals By Y. Masumoto (With 2 Figures)	152

Exciton-Polaritons in Microcavities By Y. Yamamotoa, J. Jacobson, S. Pau, H. Cao, and G. Björk (With 4 Figures)	157
Investigation of Coulomb-Blockade Effects on the Squeezing Band Width of Semiconductor Lasers By W.H. Richardson, J. Kim, and Y. Yamamoto (With 3 Figures)	165
Part V Nanostructures 1: Edge Wires, Overgrowth, and Etchi	ng
Single-Mode Stimulated Emission in a Quantum-Wire Laser Fabricated by Cleaved-Edge Overgrowth By L. Pfeiffer, W. Wegscheider, M. Dignam, A. Pinczuk, K. West, and R. Hull (With 7 Figures)	171
Fabrication of N-AlGaAs/GaAs Edge Quantum Wires on (111)B Facets with Gate-Electrode and Density Modulation of One-Dimensional Electrons By Y. Nakamura, M. Tsuchiya, J. Motohisa, H. Noge, S. Koshiba, and H. Sakaki (With 4 Figures)	181
Fabrication of Quantum-Wire Structures by Atomic-Layer Epitaxy and VPE Processes By A. Usui, H. Sunakawa, A.A. Yamaguchi, and H. Sakaki With 2 Figures)	185
Ultrahigh-Vacuum In-Situ Patterning and MBE Overgrowth of GaAs and AlGaAs Using an InAs Mask Laser By Y. Kadoya, T. Yoshida, H. Noge, and H. Sakaki (With 2 Figures)	189
Fabrication of AlGaAs/GaAs Multi-QWRs with 15 nm Wire Width Using Two-Step Etching and MBE Regrowth By S. Wakabayashi, Y. Toyoda, H. Tougou, T. Narusawa, Y. Nagamune, and Y. Arakawa (With 3 Figures)	194
Part VI Nanostructures 2: Wires Formed on Ridges and Groov	ves
Quantum Wires and Quantum Dots For Fully Confined Semiconductor Lasers By Y. Arakawa (With 9 Figures)	199
Optical Properties of GaAs Quantum-Wire Structures Fabricated by Hydrogen-Assisted Molecular Beam Epitaxy By T. Sugaya, M. Kaneko, Y. Okada, and M. Kawabe With 3 Figures)	208

MBE Growth of Quantum-Wire Structures on Top of Sharp Riges Using a Mesa-Patterned Substrate By S. Koshiba, H. Noge, Y. Nakamura, H. Akiyama, T. Inoshita, H. Ichinose, K. Wada, R. Hull, and H. Sakaki (With 4 Figures)	213
Optical Anisotropy and Optical Gain of (311) GaAs Quantum-Wire Structures at Room Temperature By R. Nötzel, M. Notomi, H. Kamada, T. Furuta, T. Yanagawa, and K.H. Ploog (With 2 Figures)	218
Part VII Nanostructures 3: Spontaneous Dot Formation	
Optical Properties of Self-Organizing Quantum-Dot Structures By S. Fafard, J.L. Merz, D. Leonard, and P.M. Petroff (With 6 Figures)	225
Direct Formation of GaAs-GaAlAs Quantum-Dot Structures by Droplet Epitaxy By K. Ishige and N. Koguchi (With 2 Figures)	238
Two-Dimensional Arrangement of InSb Epitaxial Nanoscale Crystals on Selenium-Treated Terraced GaAs Substrates By Y. Watanabe, F. Maeda, and M. Oshima (With 6 Figures)	242
Preparation of Nanocrystalline Silicon by Digital Chemical Vapor Deposition By S. Oda and M. Otobe (With 3 Figures)	248
Condensed States and Optical Properties of the Organic Nanoscale Associates in Polymer Matrices By T. Hiraga, N. Tanaka, K. Hayamizu, and T. Moriya (With 2 Figures)	254
Part VIII Epitaxy and Its Mechanisms for Nanofabrication	
Site-Specific Processes During MBE and MOMBE Growth of III-V Compounds on Singular and Vicinal Surfaces By B.A. Joyce, T. Shitara, J.H. Neave, P.N. Fawcett, and T. Kaneko (With 10 Figures)	261
Surface Evolution of Gallium Arsenide Grown by Molecular Beam Epitaxy By B.G. Orr, M.D. Johnson, C. Orme, J. Sudijono, and A.W. Hunt (With 3 Figures)	276
Morphological Evolution During Epitaxial Growth By D.D. Vvedensky, P. Šmilauer, and T. Shitara (With 3 Figures)	285

GaAs(001)–(2×4) Surface: A Theoretical Investigation By K. Shiraishi, T. Ito, and T. Ohno (With 4 Figures)	294
Comparative Study of Homoepitaxial Growths on Si(001) and Ge(111) By T. Kawamura, T. Yokotsuka, and M.R. Wilby (With 5 Figures)	298
Part IX Atom Manipulation and Surfaces	
Quantum Corrals By D. Eigler (With 5 Figures)	311
Atomcraft Technology: Single-Atom Deposition and Re-Removal by the Scanning Tunneling Microscope By D. Huang, H. Uchida, and M. Aono (With 1 Figure)	315
Time-Resolved Atomic-Scale Manipulation by STM By F. Grey, D.H. Huang, and M. Aono (With 2 Figures)	318
Nanometer-Scale Local Hydrization of the Si(111)-(7×7) Surface Using an STM Tip By H. Kuramochi, H. Uchida, and M. Aono (With 3 Figures)	322
Electrochemical Modification of Titanium and Silicon Surfaces Using the Scanning Tunneling Microscope By H. Sugimura, N. Kitamura, and H. Masuhara (With 2 Figures)	326
Electrical Transport Properties of the Si(111) Surface with Control of Its Atomic-Scale Structure By S. Hasegawa, Z.H. Zhang, C.S. Jiang, and S. Ino (With 4 Figures)	330
Cryogenic STM/STS of Sub-Nanometer Superstructure in High- T_c YBa ₂ Cu ₃ O _{7-δ} Thin Films By M. Kawasaki, M. Nantoh, K. Fujito, R. Tsuchiya, T. Hasegawa, K. Kitazawa, and H. Koinuma (With 4 Figures)	341
Elastic Imaging with Nanoscale and Atomic Resolution by Ultrasonic Force Microscopy (UFM) By O. Kolosov, H. Ogiso, H. Tokumoto, and K. Yamanaka (With 2 Figures)	345
Ultrasonic Force Microscopy of Biopolymers at Frequencies Above 100 MHz By K. Yamanaka, O. Kolosov, and H. Ogiso (With 4 Figures)	349
Index of Contributors	355