Table of Contents

	Pag
Preface	
Chapter I: Review of basic concepts	1
•	
1.1 Coverings	1
1.2 Function Fields	2
1.3 Plane Curves	2 3 5
1.4 Divisors on Riemann surfaces	5 7
1.5 Linear series 1.6 Line bundles	10
Chapter 2: Some exceptional points on Riemann surfaces	13
2.6 (Theorem on the sum of generalized Weierstrass weights)	17
2.7 Examples	18
2.8 Theorem (on the maximum weight of a generalized	
Weierstrass point)	18
Chapter 3: The inequality of Castelnuovo-Severi	20
3.5 Statement of the inequality of Castelnuovo-Severi	21
3.6 Applications	22
3.7 Some Remarks	22
3.8 Proof of Theorem 3.5	23
3.9 Castelnuovo's Riemann-Roch theorem	27
3.10 An application of Castelnuovo's Riemann-Roch theorem	29

Chapter	4: Smooth and branched coverings of Riemann surfaces	30
4.1	(Some standard results)	30
4.2	Classification of smooth coverings	30
4.3	Lifting conformal structures	31
4.4	Cover transformations	31
4.5	Some remarks on permutation groups	33
4.6	(Galois coverings)	33
4.7	(The monodromy group)	34
4.8	(Existence theorem)	36
4.9	Galois closure	36
4.10	Branched coverings	36
	(Lifting automorphisms)	39
4.13	(Lifting automorphisms to Abelian coverings)	40
	Conjugate automorphisms groups	40
4.15	(Some consequences)	41
Chapter	r 5: Automorphisms of Riemann surfaces, I	42
5.1	(Theorem of H. A. Schwarz)	42
	(Galois coverings of the Riemann sphere)	42
	Groups of genus zero	43
	Groups of genus one	44
	Maximal automorphism groups for $p \ge 2$	45
	An infinite number of (3,3,7)'s	46
	Smooth cyclic coverings of prime order	48
	N(p) < 84(p-1) infinitely often	48
	Groups with partitions	48
	$Z_2 \times Z_2$	49
	$Z_2 \times Z_2 \times Z_3$	50
	2 2 2 Dihedral groups of automorphisms	50
	Commuting involutions	51

Chapter 6: When are fixed points of automorphisms exceptional in some other sense?	52
6.1 Lewittes theorem 6.2 G ₁₆₈ on X ₃	52 52
 6.3 Cyclic coverings of P of prime order: Examples 6.4 (Motivating Lemma) 6.6 (Lemma on G-gaps) 6.13 (Theorem on higher order Weierstrass points) 6.14 Cyclic coverings in general 6.16 Invariant divisors 6.19 (Theorem on G-weights) 6.20 (Automorphisms with three or more fixed points) 	54 58 59 62 62 64 70 71
Chapter 7: Automorphisms of Riemann surfaces, II; N(p)	74
7.2 For $p \ge 2$, $N(p) \ge 8(p+1)$ 7.3 If 3 divides p, then $N(p) \ge 8(p+3)$ 7.4 $\left(Z_2 \text{ Lower bounds for some } N(p)'s\right)$	74 74 75
7.5 (Statement of Kiley's theorem) 7.8 (Group theoretic result and application) 7.9 (Another group theoretic preliminary) 7.10 Proof of Theorem 7.5	76 80 82 83
7.11 (N(p) for some small genera) 7.15 (Sharpness of bounds in Theorem 7.7) 7.16 (N(n + 1) for all primes n)	84 89 91
7.17 $(N(2n+1) \text{ for all primes } n)$	93
References	99

Index

102