Measure Theory

Contents

Introduction	
Conventions and Notation	1
Notation: Euclidean space	1
•	1
· ·	1
	1
Notation: generation of classes of sets	2
. Product sets	2
. Dot notation for an index set	2
Notation: sets defined by conditions on functions	2
Notation: open and closed sets	3
Limit of a function at a point	3 3
	3
. Standard metric space theorems	3
. Pseudometric spaces	5
Operations on Sets	7
•	7
. The symmetric difference operator Δ	7
•	8
Probabilistic interpretation of sets and operations on them	10
. Classes of Subsets of a Space	11
_	11
_	12
•	13
e e	13
_	14
<u> </u>	15
	Conventions and Notation Notation: Euclidean space Operations involving ±∞ Inequalities and inclusions A space and its subsets Notation: generation of classes of sets Product sets Dot notation for an index set Notation: sets defined by conditions on functions Notation: open and closed sets Limit of a function at a point Metric spaces Standard metric space theorems Pseudometric spaces Operations on Sets Unions and intersections The symmetric difference operator △ Limit operations on set sequences Probabilistic interpretation of sets and operations on them Classes of Subsets of a Space Set algebras Examples The generation of set algebras The Borel sets of a metric space Products of set algebras

viii Measure Theory

Ш.	Set Functions	17
1.	Set function definitions	17
2.	Extension of a finitely additive set function	19
3.	Products of set functions	20
4.	Heuristics on σ algebras and integration	21
5.	Measures and integrals on a countable space	21
6.	Independence and conditional probability (preliminary discussion)	22
7.	Dependence examples	24
8.	Inferior and superior limits of sequences of measurable sets	26
9.	Mathematical counterparts of coin tossing	27
10.	Setwise convergence of measure sequences	30
11.	Outer measure	32
12.	Outer measures of countable subsets of R	33
13.	Distance on a set algebra defined by a subadditive set function	33
14.	The pseudometric space defined by an outer measure	34
15.	Nonadditive set functions	36
IV	Measure Spaces	37
1.	Completion of a measure space (S, \mathbb{S}, λ)	37
2.	Generalization of length on R	38
3.	A general extension problem	38
4.	Extension of a measure defined on a set algebra	40
5.	Application to Borel measures	41
6.	Strengthening of Theorem 5 when the metric space S is complete	
	and separable	41
7.	Continuity properties of monotone functions	42
8.	The correspondence between monotone increasing functions on R	
	and measures on $B(\mathbf{R})$	43
9.	Discrete and continuous distributions on R	47
10.	Lebesgue-Stieltjes measures on \mathbb{R}^N and their corresponding	
	monotone functions	47
11.	Product measures	48
12.	Examples of measures on \mathbf{R}^N	49
13.	Marginal measures	50
14.	Coin tossing	5(
15.	The Carathéodory measurability criterion	51
16.	Measure hulls	52
V	Measurable Functions	51
v. 1.	Function measurability	53 53
2.	Function measurability properties	50
3.	Measurability and sequential convergence	58
3. 4.	Baire functions	58
5.	Joint distributions	60
6.	Measures on function (coordinate) space	60

Contents	ix
----------	----

	•	
7.	Applications of coordinate space measures	61
8.	Mutually independent random variables on a probability space	63
9.	Application of independence: the 0-1 law	64
10.	Applications of the 0-1 law	64
11.	A pseudometric for real valued measurable functions on a measure	
	space	65
12.	Convergence in measure	67
13.	Convergence in measure vs. almost everywhere convergence	68
14.	Almost everywhere convergence vs. uniform convergence	69
15.	Function measurability vs. continuity	69
16.	Measurable functions as approximated by continuous functions	70
17.	Essential supremum and infimum of a measurable function	71
18.	Essential supremum and infimum of a collection of	
	measurable functions	71
VI.	Integration	73
1.	The integral of a positive step function on a measure space (S, \mathbb{S}, λ)	73
2.	The integral of a positive function	74
3.	Integration to the limit for monotone increasing sequences	
	of positive functions	75
4.	Final definition of the integral	76
5.	An elementary application of integration	79
6.	Set functions defined by integrals	80
7.	Uniform integrability test functions	81
8.	Integration to the limit for positive integrands	82
9.	The dominated convergence theorem	83
10.	Integration over product measures	84
11.	Jensen's inequality	87
12.	Conjugate spaces and Hölder's inequality	88
13.	Minkowski's inequality	89
14.	The L^p spaces as normed linear spaces	90
15.	Approximation of L^p functions	91
16.	Uniform integrability	94
17.	Uniform integrability in terms of uniform integrability test functions	95
18.	L ¹ convergence and uniform integrability	95
19.	The coordinate space context	96
20.	The Riemann integral	98
21.	Measure theory vs. premeasure theory analysis	101
VII	. Hilbert Space	103
1.	Analysis of L ²	103
2.	Hilbert space	104
3.	The distance from a subspace	106
4.	Projections	107
5.	Bounded linear functionals on In	108

x Measure Theory

6.	Fourier series	109
7.	Fourier series properties	110
8.	Orthogonalization (Erhardt Schmidt procedure)	111
9.	Fourier trigonometric series	112
10.	Two trigonometric integrals	113
11.	Heuristic approach to the Fourier transform via Fourier series	113
12.	The Fourier-Plancherel theorem	115
13.	Ergodic theorems	117
VII	I. Convergence of Measure Sequences	123
1.	Definition of convergence of a measure sequence	123
2.	Linear functionals on subsets of $\mathbb{C}(S)$	126
3.	Generation of positive linear functionals by measures	
	(S compact metric).	128
4.	$\mathbb{C}(S)$ convergence of sequences in $\mathbb{M}(S)$ (S compact metric)	131
5.	Metrization of $M(S)$ to match $C(S)$ convergence; compactness	
	of $M_c(S)$ (S compact metric)	132
6.	Properties of the function $\mu \rightarrow \mu[f]$, from $M(S)$, in the $d_{\mathbf{M}}$ metric	
	into R (S compact metric)	133
7.	Generation of positive linear functionals on $\mathbb{C}_0(S)$ by measures	
	(S a locally compact but not compact separable metric space)	135
8.	$\mathbb{C}_0(S)$ and $\mathbb{C}_{00}(S)$ convergence of sequences in $\mathbb{M}(S)$ (S a locally	
	compact but not compact separable metric space)	136
9.	Metrization of $M(S)$ to match $\mathbb{C}_0(S)$ convergence; compactness	
	of $M_{\mathcal{C}}(S)$ (S a locally compact but not compact separable metric	
	space, c a strictly positive number)	137
10.	Properties of the function $\mu \rightarrow \mu[f]$, from $M(S)$ in the d_{0M} metric	
	into \mathbf{R} (S a locally compact but not compact separable metric space)	138
11.	Stable $\mathbb{C}_0(S)$ convergence of sequences in $\mathbb{M}(S)$ (S a locally	
	compact but not compact separable metric space)	139
12.	Metrization of $\mathbb{M}(S)$ to match stable $\mathbb{C}_0(S)$ convergence (S a locally	
	compact but not compact separable metric space)	139
13.	Properties of the function $\mu \rightarrow \mu[f]$, from M(S) in the d_{M} ' metric into	
	R (S a locally compact but not compact separable metric space)	141
14.	Application to analytic and harmonic functions	142
IX.	Signed Measures	145
1.	Range of values of a signed measure	145
2.	Positive and negative components of a signed measure	145
3.	Lattice property of the class of signed measures	146
4.	Absolute continuity and singularity of a signed measure	147
5.	Decomposition of a signed measure relative to a measure	148
6.	A basic preparatory result on singularity	150
7.	Integral representation of an absolutely continuous measure	150
8.	Bounded linear functionals on L ¹	151

	Contents	хi
9.	Sequences of signed measures	152
10.	Vitali-Hahn-Saks theorem (continued)	155
11.	Theorem 10 for signed measures	155
	Theorem 10 for digited medicates	100
X.	Measures and Functions of Bounded Variation	
	on R	157
1.	Introduction	157
2.	Covering lemma	157
3.	Vitali covering of a set	158
4.	Derivation of Lebesgue-Stieltjes measures and of monotone	4.50
_	functions	158
5.	Functions of bounded variation	160
6.	Functions of bounded variation vs. signed measures	163
7.	Absolute continuity and singularity of a function of bounded variation	
8.	The convergence set of a sequence of monotone functions	165
9.	Helly's compactness theorem for sequences of monotone functions	165
10.	Intervals of uniform convergence of a convergent sequence of	166
11	monotone functions C(D convergence of management of a compact interval I	166 166
11. 12.	$\mathbb{C}(I)$ convergence of measure sequences on a compact interval I $\mathbb{C}_0(\mathbb{R})$ convergence of a measure sequence	167
12. 13.	Stable $\mathbb{C}_0(\mathbb{R})$ convergence of a measure sequence	169
13. 14.	The characteristic function of a measure	169
14. 15.	Stable $\mathbb{C}_0(\mathbb{R})$ convergence of a sequence of probability distributions	171
16.	Application to a stable $\mathbb{C}_0(\mathbb{R})$ metrization of $\mathbb{M}(\mathbb{R})$	172
10. 17.	General approach to derivation	172
18.	A ratio limit lemma	174
19.	Application to the boundary limits of harmonic functions	176
VI	Conditional Expectations: Martingale Theory	170
	. Conditional Expectations; Martingale Theory	179
1. 2.	Stochastic processes Conditional probability and expectation	179 179
2. 3	Conditional expectation properties	183
<i>4</i> .	Filtrations and adapted families of functions	187
5.	Martingale theory definitions	188
6.	Martingale examples	189
7.	Elementary properties of (sub- super-) martingales	190
8.	Optional times	191
9.	Optional time properties	192
10.	The optional sampling theorem	193
11.	The maximal submartingale inequality	194
12.	Upcrossings and convergence	194
13.	The submartingale upcrossing inequality	195
14.	Forward (sub- super-) martingale convergence	195
15.	Backward martingale convergence	197
16.	Backward supermartingale convergence	198

xii	Measure Theory	
17.	Application of martingale theory to derivation	199
18.	Application of martingale theory to the 0-1 law	201
19.	Application of martingale theory to the strong law of large numbers	201
20.	Application of martingale theory to the convergence of infinite series	202
21.	Application of martingale theory to the boundary limits of	
	harmonic functions	203

Notation 205 Index 207