## Contents

Preface XV

|          | List of Contributors XVII  Color Plates XXIII                  |
|----------|----------------------------------------------------------------|
| Part One | Scaling and Challenge of Si-based CMOS 1                       |
| 1        | Scaling and Limitation of Si-based CMOS 3                      |
|          | Gang He, Zhaoqi Sun, Mao Liu, and Lide Zhang                   |
| 1.1      | Introduction 3                                                 |
| 1.2      | Scaling and Limitation of CMOS 4                               |
| 1.2.1    | Device Scaling and Power Dissipation 4                         |
| 1.2.2    | Gate Oxide Tunneling 7                                         |
| 1.2.3    | Gate Oxide Scaling Trends 8                                    |
| 1.2.4    | Scaling and Limitation of SiO <sub>2</sub> Gate Dielectrics 10 |
| 1.2.5    | Silicon Oxynitrides 14                                         |
| 1.3      | Toward Alternative Gate Stacks Technology 16                   |
| 1.3.1    | Advances and Challenges in Dielectric Development 16           |
| 1.3.2    | Advances and Challenges in Electrode Development 19            |
| 1.4      | Improvements and Alternative to CMOS Technologies 22           |
| 1.4.1    | Improvement to CMOS 22                                         |
| 1.4.1.1  | New Materials 22                                               |
| 1.4.1.2  | New Structures 23                                              |
| 1.5      | Potential Technologies Beyond CMOS 23                          |
| 1.6      | Conclusions 24                                                 |
|          | References 25                                                  |
| Part Two | High-k Deposition and Materials Characterization 31            |
| 2        | Issues in High-k Gate Dielectrics and its Stack Interfaces 33  |
|          | Hong-Liang Lu and David Wei Zhang                              |
| 2.1      | Introduction 33                                                |
| 2.2      | High-k Dielectrics 33                                          |
| 2.2.1    | The Criteria Required for High-k Dielectrics 34                |



| ۷١ | Contents |                                                                                                              |
|----|----------|--------------------------------------------------------------------------------------------------------------|
| ·  | 2.2.2    | The Challenges of High-k Dielectrics 37                                                                      |
|    | 2.2.2.1  | Structural Defects 37                                                                                        |
|    | 2.2.2.2  | Channel Mobility Degradation 38                                                                              |
|    | 2.2.2.3  | Threshold Voltage Control 38                                                                                 |
|    | 2.2.2.4  | Reliability 39                                                                                               |
|    | 2.3      | Metal Gates 40                                                                                               |
|    | 2.3.1    | Basic Requirements for Metal Gates 41                                                                        |
|    | 2.3.2    | Metal Gate Materials 41                                                                                      |
|    | 2.3.2.1  | Pure Metals 42                                                                                               |
|    | 2.3.2.2  | Metallic Alloys 42                                                                                           |
|    | 2.3.2.3  | Metal Nitrides 42                                                                                            |
|    | 2.3.2.4  | Metal Silicides 43                                                                                           |
|    | 2.3.3    | Work Function 43                                                                                             |
|    | 2.3.4    | Metal Gate Structures 44                                                                                     |
|    | 2.3.5    | Metal Gate/High-k Integration 44                                                                             |
|    | 2.3.6    | Process Integration 44                                                                                       |
|    | 2.4      | Integration of High-k Gate Dielectrics with Alternative                                                      |
|    |          | Channel Materials 45                                                                                         |
|    | 2.4.1    | High-k/Ge Interface 46                                                                                       |
|    | 2.4.2    | High-k/III–V Interface 49                                                                                    |
|    | 2.5      | Summary 51                                                                                                   |
|    |          | References 52                                                                                                |
|    | 3        | UV Engineering of High-k Thin Films 61                                                                       |
|    |          | Ian W. Boyd                                                                                                  |
|    | 3.1      | Introduction 61                                                                                              |
|    | 3.2      | Gas Discharge Generation of UV (Excimer) Radiation 61                                                        |
|    | 3.3      | Excimer Lamp Sources Based on Silent Discharges 63                                                           |
|    | 3.4      | Predeposition Surface Cleaning for High-k Layers 65                                                          |
|    | 3.5      | UV Photon Deposition of Ta <sub>2</sub> O <sub>5</sub> Films 66                                              |
|    | 3.6      | Photoinduced Deposition of $Hf_{1-x}Si_xO_y$ Layers 70                                                       |
|    | 3.7      | Summary 73                                                                                                   |
|    |          | References 73                                                                                                |
|    | 4        | Atomic Layer Deposition Process of Hf-Based High-k Gate                                                      |
|    |          | Dielectric Film on Si Substrate 77                                                                           |
|    |          | Tae Joo Park, Moonju Cho, Hyung-Suk Jung, and Cheol Seong Hwang                                              |
|    | 4.1      | Introduction 77                                                                                              |
|    | 4.2      | Precursor Effect on the HfO <sub>2</sub> Characteristics 78                                                  |
|    | 4.2.1    | Hafnium Precursor Effect on the HfO <sub>2</sub> Dielectric Characteristics 78                               |
|    | 4.2.1.1  | Hafnium Chloride (HfCl <sub>4</sub> ) 78                                                                     |
|    | 4.2.1.2  | Tetrakis Dimethylamido Hafnium [HfN(CH <sub>3</sub> ) <sub>2</sub> ] <sub>4</sub> 82                         |
|    | 4.2.1.3  | Tetrakis Ethylmethylamino Hafnium (Hf[N(C <sub>2</sub> H <sub>5</sub> )(CH <sub>3</sub> )] <sub>4</sub> ) 85 |
|    | 4.2.1.4  | tert-Butoxytris[Ethylmethylamido] Hafnium (HfO <sup>t</sup> Bu[NEtMe] <sub>3</sub> ) 86                      |
|    | 4.2.1.5  | tert-Butoxide Hafnium (Hf[OC <sub>4</sub> H <sub>9</sub> ] <sub>4</sub> ) 87                                 |

| 4.2.2    | Oxygen Sources and Reactants 88                          |
|----------|----------------------------------------------------------|
| 4.2.2.1  | H <sub>2</sub> O versus O <sub>3</sub> 88                |
| 4.2.2.2  | O <sub>3</sub> Concentration 93                          |
| 4.2.2.3  | Reactants for In Situ N Incorporation 95                 |
| 4.3      | Doped and Mixed High-k 97                                |
| 4.3.1    | Zr-Doped HfO <sub>2</sub> 98                             |
| 4.3.2    | Si-Doped HfO <sub>2</sub> 100                            |
| 4.3.3    | Al-Doped HfO <sub>2</sub> 102                            |
| 4.4      | Summary 105                                              |
|          | References 105                                           |
| 5        | Structural and Electrical Characteristics of Alternative |
|          | High-κ Dielectrics for CMOS Applications 111             |
|          | Fu-Chien Chiu, Somnath Mondal, and Tung-Ming Pan         |
| 5.1      | Introduction 111                                         |
| 5.2      | Requirement of High-k Oxide Materials 114                |
| 5.3      | Rare-Earth Oxide as Alternative Gate Dielectrics 117     |
| 5.4      | Structural Characteristics of High- $\kappa$ RE Oxide    |
|          | Films 118                                                |
| 5.4.1    | Process Compatibility 118                                |
| 5.4.2    | X-Ray Diffraction Analysis 120                           |
| 5.4.3    | Atomic Force Microscope Investigation 122                |
| 5.4.4    | Transmission Electron Microscopy Technique 125           |
| 5.4.5    | X-Ray Photoelectron Spectroscopy Analysis 128            |
| 5.5      | Electrical Characteristics of High-κ RE Oxide Films 132  |
| 5.5.1    | The Threshold Voltage, Flatband Voltage, Interface Trap, |
|          | and Fixed Charge 132                                     |
| 5.5.2    | Leakage Mechanism 134                                    |
| 5.5.2.1  | Schottky or Thermionic Emission 135                      |
| 5.5.2.2  | Fowler–Nordheim Tunneling 137                            |
| 5.5.2.3  | Direct Tunneling 139                                     |
| 5.5.2.4  | Thermionic Field Emission 141                            |
| 5.5.2.5  | Poole–Frenkel Emission 141                               |
| 5.5.2.6  | Hopping Conduction 142                                   |
| 5.5.2.7  | Ohmic Conduction 144                                     |
| 5.5.2.8  | Space Charge-Limited Conduction 145                      |
| 5.5.2.9  | Ionic Conduction 149                                     |
| 5.5.2.10 | Grain Boundary-Limited Conduction 149                    |
| 5.5.3    | High-κ Silicon Interface 150                             |
| 5.5.4    | Band Alignment 153                                       |
| 5.5.5    | Channel Mobility 163                                     |
| 5.5.6    | Dielectric Breakdown 166                                 |
| 5.6      | Conclusions and Perspectives 171                         |
|          | References 172                                           |

| VIII | Contents |
|------|----------|
|------|----------|

| 6     | Hygroscopic Tolerance and Permittivity Enhancement of Lanthanum Oxide (La <sub>2</sub> O <sub>3</sub> ) for High-k Gate Insulators 185 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|
|       | Yi Zhao                                                                                                                                |
| 6.1   | Introduction 185                                                                                                                       |
| 6.2   | Hygroscopic Phenomenon of La <sub>2</sub> O <sub>3</sub> Films 186                                                                     |
| 6.2.1 | Effect of Moisture Absorption on Surface Roughness of La <sub>2</sub> O <sub>3</sub> Films 187                                         |
| 6.2.2 | Effect of Moisture Absorption on Electrical Properties of La <sub>2</sub> O <sub>3</sub> Films 188                                     |
| 6.3   | Low Permittivity Phenomenon of La <sub>2</sub> O <sub>3</sub> Films 191                                                                |
| 6.3.1 | Moisture Absorption-Induced Permittivity Degradation of $La_2O_3$ Films 191                                                            |
| 6.3.2 | Permittivity of La <sub>2</sub> O <sub>3</sub> Films without Moisture Absorption 193                                                   |
| 6.4   | Hygroscopic Tolerance Enhancement of La <sub>2</sub> O <sub>3</sub> Films 194                                                          |
| 6.4.1 | Hygroscopic Tolerance Enhancement of La <sub>2</sub> O <sub>3</sub> Films by Y <sub>2</sub> O <sub>3</sub><br>Doping 194               |
| 6.5   | Hygroscopic Tolerance Enhancement of La <sub>2</sub> O <sub>3</sub> Films<br>by Ultraviolet Ozone Treatment 198                        |
| 6.6   | Thermodynamic Analysis of Moisture Absorption Phenomenon in High-k Gate Dielectrics 203                                                |
| 6.7   | Permittivity Enhancement of La <sub>2</sub> O <sub>3</sub> Films by Phase Control 205                                                  |
| 6.7.1 | Experimental Procedures and Characterizations 207                                                                                      |
| 6.7.2 | Permittivity Enhancement by Phase Control due to Y <sub>2</sub> O <sub>3</sub> Doping 208                                              |
| 6.7.3 | Higher-k Amorphous La <sub>1-x</sub> Ta <sub>x</sub> O <sub>y</sub> Films 213                                                          |
| 6.8   | Summary 219                                                                                                                            |
|       | References 221                                                                                                                         |
| 7     | Characterization of High-k Dielectric Internal Structure by                                                                            |
|       | X-Ray Spectroscopy and Reflectometry: New Approaches to Interlayer Identification and Analysis 225                                     |
|       | Elena O. Filatova, Andrey A. Sokolov, and Igor V. Kozhevnikov                                                                          |
| 7.1   | Introduction 225                                                                                                                       |
| 7.2   | Chemical Bonding and Crystalline Structure of Transition                                                                               |
| 7.2   | Metal Dielectrics 227                                                                                                                  |
| 7.3   | NEXAFS Investigation of Internal Structure 229                                                                                         |
| 7.4   | Studying the Internal Structure of High-K Dielectric Films by                                                                          |
|       | Hard X-Ray Photoelectron Spectroscopy and TEM 236                                                                                      |
| 7.5   | Studying the Internal Structure of High-K Dielectric Films by X-ray Reflectometry 244                                                  |
| 7.5.1 | Reconstruction of the Dielectric Constant Profile by Hard X-Ray<br>Reflectometry 244                                                   |
| 7.5.2 | Reconstruction of the Depth Distribution of Chemical Elements Concentration by Soft X-Ray Reflectometry 254 References 266             |

| 8          | High-k Insulating Films on Semiconductors and Metals: General        |
|------------|----------------------------------------------------------------------|
|            | Trends in Electron Band Alignment 273                                |
|            | Valeri V. Afanas'ev, Michel Houssa, and Andre Stesmans               |
| 8.1        | Introduction 273                                                     |
| 8.2        | Band Offsets and IPE Spectroscopy 274                                |
| 8.3        | Silicon/Insulator Band Offsets 277                                   |
| 8.4        | Band Alignment at Interfaces of High-Mobility                        |
|            | Semiconductors 280                                                   |
| 8.5        | Metal/Insulator Barriers 284                                         |
| 8.6        | Conclusions 289                                                      |
|            | References 289                                                       |
| Part Three | e Challenge in Interface Engineering and Electrode 293               |
| 9          | Interface Engineering in the High-k Dielectric Gate Stacks 295       |
|            | Shijie Wang, Yuanping Feng, and Alfred C.H. Huan                     |
| 9.1        | Introduction 295                                                     |
| 9.2        | High-k Oxide/Si Interfaces 295                                       |
| 9.2.1      | Growth of Crystalline High-k Oxide on Semiconductors 297             |
| 9.2.2      | Measurement of Band Alignment at High-k Oxide/Si Interfaces 298      |
| 9.3        | Metal Gate/High-k Dielectric Interfaces 303                          |
| 9.4        | Chemical Tuning of Band Alignments for Metal Gate/High-k             |
|            | Oxide Interfaces 308                                                 |
| 9.5        | Summary and Discussion 314                                           |
|            | References 315                                                       |
| 10         | Interfacial Dipole Effects on High-k Gate Stacks 319                 |
|            | Li Qiang Zhu                                                         |
| 10.1       | Introduction 319                                                     |
| 10.2       | Metal Gate Consideration 321                                         |
| 10.3       | Interfacial Dipole Effects in High-k Gate Stacks 324                 |
| 10.3.1     | Modification of the Gate Work Function by the Interfacial Dipole 324 |
| 10.3.2     | Fermi-Level Pinning Effects at Gate/High-k Interfaces 326            |
| 10.3.3     | Micromodels for the Interfacial Dipole in High-k Stacks 328          |
| 10.3.3.1   | Fermi-Level Pinning 328                                              |
| 10.3.3.2   | Oxygen Vacancy Model 329                                             |
| 10.3.3.3   | Pauling Electronegativity Model 330                                  |
| 10.3.3.4   | Area Oxygen Density Model 331                                        |
| 10.4       | Observation of the Interfacial Dipole in High-k Stacks 332           |
| 10.4.1     | Flatband Voltage Shifts in Capacitance-Voltage Measurements 333      |
| 10.4.2     | Core-Level Binding Energy Shift in Photoelectron                     |
|            | Spectroscopy 335                                                     |
| 10.4.2.1   | Band Discontinuities and Schottky Barrier Analysis in                |
|            | Heterostructures 336                                                 |
| 10.4.2.2   | Interfacial Charge Investigation 337                                 |

| x | Contents                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 10.4.2.3                                                   | Band Alignment Determination 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 10.4.2.4                                                   | Interfacial Dipole Measurement by Photoelectron Spectroscopy 339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 10.4.3                                                     | Band Alignments Measured by Using Internal Photoemission 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 10.4.4                                                     | Potential Shifts in Kelvin Probe Measurements 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 10.5                                                       | Summary 348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |                                                            | References 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | 11                                                         | Metal Gate Electrode for Advanced CMOS Application 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |                                                            | Wenwu Wang, Xiaolei Wang, and Kai Han                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 11.1                                                       | The Scaling and Improved Performance of MOSFET Devices 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 11.2                                                       | Urgent Issues about MOS Gate Materials for Sub-0.1 $\mu m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |                                                            | Device Gate Stack 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 11.2.1                                                     | SiO <sub>2</sub> Gate Dielectric 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | 11.2.2                                                     | Polysilicon Electrode 363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 11.3                                                       | New Requirements of MOS Gate Materials for Sub-0.1 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                                                            | Device Gate Stack 365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 11.3.1                                                     | High-κ Gate Dielectric 365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 11.3.2                                                     | Metal Gate Electrode 367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | 11.4                                                       | Summary 374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |                                                            | References 374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | Part Four                                                  | Development in non-Si-based CMOS technology 379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 12                                                         | Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |                                                            | Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381 Albert Achin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | 12.1                                                       | Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381  Albert Achin  Introduction 381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | 12.1<br>12.2                                               | Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381  Albert Achin Introduction 381  High-κ/Si CMOSFETs 386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 12.1<br>12.2<br>12.2.1                                     | Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381  Albert Achin  Introduction 381  High-κ/Si CMOSFETs 386  Potential Interface Reaction Mechanism 387                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | 12.1<br>12.2<br>12.2.1<br>12.2.2                           | Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381  Albert Achin  Introduction 381  High-κ/Si CMOSFETs 386  Potential Interface Reaction Mechanism 387  Inserting an Ultrathin SiON 388                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 12.1<br>12.2<br>12.2.1<br>12.2.2<br>12.2.3                 | Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381  Albert Achin  Introduction 381  High-κ/Si CMOSFETs 386  Potential Interface Reaction Mechanism 387  Inserting an Ultrathin SiON 388  Low-Temperature Process 389                                                                                                                                                                                                                                                                                                                                                                                          |
|   | 12.1<br>12.2<br>12.2.1<br>12.2.2                           | Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381  Albert Achin  Introduction 381  High-κ/Si CMOSFETs 386  Potential Interface Reaction Mechanism 387  Inserting an Ultrathin SiON 388                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 12.1<br>12.2<br>12.2.1<br>12.2.2<br>12.2.3<br>12.3<br>12.3 | Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381  Albert Achin Introduction 381  High-κ/Si CMOSFETs 386  Potential Interface Reaction Mechanism 387 Inserting an Ultrathin SiON 388  Low-Temperature Process 389  High-κ/Ge CMOSFETs 392  Defect-Free Ge-on-Insulator 392                                                                                                                                                                                                                                                                                                                                   |
|   | 12.1<br>12.2<br>12.2.1<br>12.2.2<br>12.2.3<br>12.3         | Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381  Albert Achin Introduction 381  High-κ/Si CMOSFETs 386  Potential Interface Reaction Mechanism 387 Inserting an Ultrathin SiON 388  Low-Temperature Process 389  High-κ/Ge CMOSFETs 392  Defect-Free Ge-on-Insulator 392  The Challenge for Ge n-MOS 394                                                                                                                                                                                                                                                                                                   |
|   | 12.1<br>12.2<br>12.2.1<br>12.2.2<br>12.2.3<br>12.3<br>12.3 | Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381  Albert Achin Introduction 381  High-κ/Si CMOSFETs 386  Potential Interface Reaction Mechanism 387 Inserting an Ultrathin SiON 388  Low-Temperature Process 389  High-κ/Ge CMOSFETs 392  Defect-Free Ge-on-Insulator 392  The Challenge for Ge n-MOS 394                                                                                                                                                                                                                                                                                                   |
|   | 12.1<br>12.2<br>12.2.1<br>12.2.2<br>12.2.3<br>12.3<br>12.3 | Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381  Albert Achin Introduction 381  High-κ/Si CMOSFETs 386  Potential Interface Reaction Mechanism 387 Inserting an Ultrathin SiON 388  Low-Temperature Process 389  High-κ/Ge CMOSFETs 392  Defect-Free Ge-on-Insulator 392  The Challenge for Ge n-MOS 394  High-Mobility Ge n-MOS Using Novel Technology 395                                                                                                                                                                                                                                                |
|   | 12.1<br>12.2<br>12.2.1<br>12.2.2<br>12.2.3<br>12.3<br>12.3 | Metal Gate/High- $\kappa$ CMOS Evolution from Si to Ge Platform 381  Albert Achin Introduction 381  High- $\kappa$ /Si CMOSFETs 386  Potential Interface Reaction Mechanism 387 Inserting an Ultrathin SiON 388  Low-Temperature Process 389  High- $\kappa$ /Ge CMOSFETs 392  Defect-Free Ge-on-Insulator 392  The Challenge for Ge n-MOS 394  High-Mobility Ge n-MOS Using Novel Technology 395  Ge Platform 397                                                                                                                                                                                                     |
|   | 12.1<br>12.2<br>12.2.1<br>12.2.2<br>12.2.3<br>12.3<br>12.3 | Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381  Albert Achin Introduction 381  High-κ/Si CMOSFETs 386  Potential Interface Reaction Mechanism 387 Inserting an Ultrathin SiON 388  Low-Temperature Process 389  High-κ/Ge CMOSFETs 392  Defect-Free Ge-on-Insulator 392  The Challenge for Ge n-MOS 394  High-Mobility Ge n-MOS Using Novel Technology 395  Ge Platform 397  Logic and Memory Integration 397                                                                                                                                                                                             |
|   | 12.1<br>12.2<br>12.2.1<br>12.2.2<br>12.2.3<br>12.3<br>12.3 | Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381  Albert Achin Introduction 381  High-κ/Si CMOSFETs 386  Potential Interface Reaction Mechanism 387 Inserting an Ultrathin SiON 388  Low-Temperature Process 389  High-κ/Ge CMOSFETs 392  Defect-Free Ge-on-Insulator 392  The Challenge for Ge n-MOS 394  High-Mobility Ge n-MOS Using Novel Technology 395  Ge Platform 397  Logic and Memory Integration 397  3D GeOI/Si IC 400                                                                                                                                                                          |
|   | 12.1<br>12.2<br>12.2.1<br>12.2.2<br>12.2.3<br>12.3<br>12.3 | Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381  Albert Achin Introduction 381  High-κ/Si CMOSFETs 386  Potential Interface Reaction Mechanism 387 Inserting an Ultrathin SiON 388  Low-Temperature Process 389  High-κ/Ge CMOSFETs 392  Defect-Free Ge-on-Insulator 392  The Challenge for Ge n-MOS 394  High-Mobility Ge n-MOS Using Novel Technology 395  Ge Platform 397  Logic and Memory Integration 397  3D GeOI/Si IC 400  Conclusions 401                                                                                                                                                         |
|   | 12.1<br>12.2<br>12.2.1<br>12.2.2<br>12.2.3<br>12.3<br>12.3 | Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381  Albert Achin Introduction 381  High-κ/Si CMOSFETs 386  Potential Interface Reaction Mechanism 387 Inserting an Ultrathin SiON 388  Low-Temperature Process 389  High-κ/Ge CMOSFETs 392  Defect-Free Ge-on-Insulator 392  The Challenge for Ge n-MOS 394  High-Mobility Ge n-MOS Using Novel Technology 395  Ge Platform 397  Logic and Memory Integration 397  3D GeOI/Si IC 400  Conclusions 401  References 402                                                                                                                                         |
|   | 12.1<br>12.2<br>12.2.1<br>12.2.2<br>12.2.3<br>12.3<br>12.3 | Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381  Albert Achin Introduction 381  High-κ/Si CMOSFETs 386  Potential Interface Reaction Mechanism 387 Inserting an Ultrathin SiON 388  Low-Temperature Process 389  High-κ/Ge CMOSFETs 392  Defect-Free Ge-on-Insulator 392  The Challenge for Ge n-MOS 394  High-Mobility Ge n-MOS Using Novel Technology 395  Ge Platform 397  Logic and Memory Integration 397  3D GeOI/Si IC 400  Conclusions 401  References 402  Theoretical Progress on GaAs (001) Surface and GaAs/high-κ Interface 407                                                               |
|   | 12.1<br>12.2<br>12.2.1<br>12.2.2<br>12.2.3<br>12.3<br>12.3 | Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381  Albert Achin Introduction 381  High-κ/Si CMOSFETs 386  Potential Interface Reaction Mechanism 387 Inserting an Ultrathin SiON 388  Low-Temperature Process 389  High-κ/Ge CMOSFETs 392  Defect-Free Ge-on-Insulator 392  The Challenge for Ge n-MOS 394  High-Mobility Ge n-MOS Using Novel Technology 395  Ge Platform 397  Logic and Memory Integration 397  3D GeOI/Si IC 400  Conclusions 401  References 402  Theoretical Progress on GaAs (001) Surface and GaAs/high-κ Interface 407  Weichao Wang, Ka Xiong, Robert M. Wallace, and Kyeongjae Cho |

| 13.3.1    | Clean GaAs Surface 409                                                                                                                                                                        |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13.3.2    | GaAs Surface Oxidation 411                                                                                                                                                                    |
| 13.3.3    | Passivation of the Oxidized GaAs Surface 415                                                                                                                                                  |
| 13.3.4    | Initial oxidation of the GaAs(001)- $\beta$ 2(2 × 4) Surface 418                                                                                                                              |
| 13.4      | Origin of Gap States at the High-k/GaAs Interface and Interface Passivation 419                                                                                                               |
| 13.4.1    | Strained HfO <sub>2</sub> /GaAs Interface 419                                                                                                                                                 |
| 13.4.2    | Strain-Free GaAs/HfO <sub>2</sub> Interfaces 421                                                                                                                                              |
| 13.4.3    | Si Passivation of HfO <sub>2</sub> /GaAs Interface 423                                                                                                                                        |
| 13.4.4    | Sulfur Passivation Effect on HfO <sub>2</sub> /GaAs Interface 425                                                                                                                             |
| 13.5      | Conclusions 428 References 428                                                                                                                                                                |
| 14        | III–V MOSFETs with ALD High-κ Gate Dielectrics 433 Jack C. Lee and Han Zhao                                                                                                                   |
| 14.1      | Introduction 433                                                                                                                                                                              |
| 14.2      | Surface Channel InGaAs MOSFETs with ALD Gate Oxides 436                                                                                                                                       |
| 14.2.1    | Effects of Gate-First and Gate-Last Processes on Interface Quality of In <sub>0.53</sub> Ga <sub>0.47</sub> As MOSCAPs Using ALD Al <sub>2</sub> O <sub>3</sub> and HfO <sub>2</sub> 436      |
| 14.2.2    | Effect of Channel Doping Concentration and Thickness on Device<br>Performance for In <sub>0.53</sub> Ga <sub>0.47</sub> As MOSFETs with ALD Al <sub>2</sub> O <sub>3</sub><br>Dielectrics 441 |
| 14.2.3    | In <sub>0.53</sub> Ga <sub>0.47</sub> As n-MOSFETs with ALD Al <sub>2</sub> O <sub>3</sub> , HfO <sub>2</sub> , and LaAlO <sub>3</sub> Gate Dielectrics 445                                   |
| 14.3      | Buried Channel InGaAs MOSFETs 450                                                                                                                                                             |
| 14.3.1    | High-Performance In <sub>0.7</sub> Ga <sub>0.3</sub> As MOSFETs with                                                                                                                          |
|           | Mobility >4400 cm <sup>2</sup> /(V s) Using InP Barrier Layer 450                                                                                                                             |
| 14.3.2    | Effects of Barrier Layers on Device Performance of High-Mobility $In_{0.7}$ $Ga_{0.3}$ As MOSFETs 455                                                                                         |
| 14.4      | Summary 460                                                                                                                                                                                   |
|           | References 466                                                                                                                                                                                |
| Part Five | High-k Application in Novel Devices 471                                                                                                                                                       |
| 15        | High-k Dielectrics in Ferroelectric Gate Field Effect Transistors for Nonvolatile Memory Applications 473  Xubing Lu                                                                          |
| 15.1      | Introduction 473                                                                                                                                                                              |
| 15.2      | Overview of High-k Dielectric Studies for FeFET Applications 477                                                                                                                              |
| 15.2.1    | Materials Requirements for High-k Buffer Layers 477                                                                                                                                           |
| 15.2.2    | Research Progress of High-k in the MFIS Devices 478                                                                                                                                           |
| 15.2.3    | Issues for High-k Dielectric Integration into MFIS Devices 481                                                                                                                                |
| 15.2.3.1  | High-k/Si Interfacial Reaction 481                                                                                                                                                            |
| 15.2.3.2  | Crystallinity and Interdiffusion with Ferroelectric Film 484                                                                                                                                  |
| 15.2.3.3  | Possible Solutions 484                                                                                                                                                                        |

| ХII | Contents |                                                                      |
|-----|----------|----------------------------------------------------------------------|
| ·   | 15.3     | Developing of HfTaO Buffer Layers for FeFET Applications 485         |
|     | 15.3.1   | Introduction 485                                                     |
|     | 15.3.2   | Experimental Procedure 485                                           |
|     | 15.3.3   | Crystallization Characteristics of HfTaO Films 486                   |
|     | 15.3.4   | Electrical Properties of Hf/TaO Films on Si Substrates 486           |
|     | 15.3.5   | Electrical Characteristics of Pt/SBT/HfTaO/Si Diodes 490             |
|     | 15.3.6   | Electrical Properties of MFIS FeFETs with HfTaO                      |
|     |          | Buffer Layers 493                                                    |
|     | 15.4     | Summary 496                                                          |
|     |          | References 497                                                       |
|     | 16       | Rare-Earth Oxides as High-k Gate Dielectrics for Advanced            |
|     |          | Device Architectures 501                                             |
|     |          | Pooi See Lee, Mei Yin Chan, and Peter Damarwan                       |
|     | 16.1     | Introduction 501                                                     |
|     | 16.2     | Key Challenges for High-k Dielectrics 502                            |
|     | 16.2.1   | Interfaces Properties 502                                            |
|     | 16.2.2   | Thermal Stability 502                                                |
|     | 16.2.3   | Fermi-Level Pinning 503                                              |
|     | 16.2.4   | Device Integration 503                                               |
|     | 16.3     | Rare-Earth Oxides as High- $\kappa$ Dielectrics 506                  |
|     | 16.3.1   | Lutetium Oxides as High-k Dielectrics 507                            |
|     | 16.3.2   | $Gd_2O_3$ as High- $\kappa$ Dielectric 514                           |
|     | 16.3.3   | Summary 516                                                          |
|     | 16.4     | High- <i>k</i> Dielectrics in Advanced Device Architecture 517       |
|     | 16.4.1   | HfO <sub>2</sub> Alloy with Rare-Earth and Bilayer Stacks 517        |
|     | 16.4.2   | Advanced Device Architecture with High-k Dielectrics 519             |
|     | 16.4.2.1 | High-k Dielectrics for Advanced CNT and                              |
|     |          | Nanowire Devices 519                                                 |
|     | 16.4.2.2 | High-k Dielectrics for DRAM and Flash Memory                         |
|     |          | Devices 520                                                          |
|     |          | References 522                                                       |
|     | Part Six | Challenge and Future Directions 531                                  |
|     | 17       | The Interaction Challenges with Novel Materials in Developing        |
|     |          | High-Performance and Low-Leakage High-κ/Metal Gate                   |
|     |          | CMOS Transistors 533                                                 |
|     |          | Michael Chudzik, Siddarth Krishnan, Unoh Kwon, Mukesh Khare, Vijay   |
|     |          | Narayanan, Takashi Ando, Ed Cartier, Huiming Bu, and Vamsi Paruchuri |
|     | 17.1     | Introduction 533                                                     |
|     | 17.2     | Traditional CMOS Integration Processes 534                           |
|     | 17.3     | High- $\kappa$ /Metal Gate Integration Processes 536                 |
|     | 17 4     | Mobility 536                                                         |

Metal Electrodes and Effective Work Function 541

17.5

| $T_{ m inv}$ Scaling and Impacts on Gate Leakage and Effective |
|----------------------------------------------------------------|
| Work Function 544                                              |
| Ambients and Oxygen Vacancy-Induced Modulation of              |
| Threshold Voltage 545                                          |
| Reliability 547                                                |
| Conclusions 550                                                |
| References 551                                                 |
|                                                                |

Index 557