

Table of contents

List of notations	XIV
Chapter 1. Lie groups and homogeneous spaces	1
§1. Lie groups and their actions on manifolds	2
1. Basic conventions about manifolds	2
2. Lie groups and their homomorphisms	5
3. Actions of Lie groups	6
4. Lie subgroups and coset manifolds	9
5. The structure of an orbit	12
6. General morphisms of actions	13
7. Coverings of actions	14
§2. Infinitesimal study of Lie groups and their actions	16
1. Flows and one-parameter subgroups	16
2. The tangent algebra of a Lie group	18
3. Lie subgroups and Lie subalgebras	20
4. Infinitesimal study of actions	23
5. Lie transformation groups	25
6. Compact Lie groups and Lie algebras	27
7. Complexification	29
8. Examples of compact and reductive complex Lie groups	30
§3. Compact Lie groups, their subgroups and homomorphisms	37
1. Maximal tori	37
2. Characters, weights and roots	39
3. Weyl chambers, simple roots, Weyl group	41
4. Dynkin diagrams and the classification of compact Lie algebras	43
5. The classification of connected compact Lie groups	44
6. Automorphisms	48
7. Linear representations	49
8. The character and the dimension of a representation	51
9. On the classification of connected Lie subgroups of simple compact Lie groups	55
10. Indices of homomorphisms and subgroups	58
11. Subgroups of maximal rank	61
12. Centralizers of tori	64
13. Parabolic subgroups	65
§4. Homogeneous spaces	67
1. The group model	67
2. The main problems	70

3. The isotropy representation	72
4. The group of automorphisms	73
5. The group of autosimilitudes	74
6. Invariant tensor fields	76
7. Averaging operators	78
8. Invariant Riemannian structures	80
9. Symmetric homogeneous spaces	82
10. Some homotopy properties of homogeneous spaces	83
 §5. Factorizations of Lie groups	 85
1. Enlargements of transitive actions and factorizations of groups	85
2. Factorizations of Lie groups and Lie algebras	87
3. Some examples of inclusions between transitive actions	90
4. Factorizations of compact Lie groups and Lie algebras	94
Notes	95
 Chapter 2. Graded algebras and cohomology	 97
 §6. Graded algebras	 97
1. Preliminaries about graded vector spaces	97
2. Preliminaries about graded algebras	101
3. Generators of a canonical graded algebra	104
4. Derivations	106
5. A uniqueness theorem for the tensor product decomposition	108
6. Graded coalgebras	110
7. Graded bialgebras	113
8. Primitive elements	115
9. Hopf's and Samelson's theorems	117
10. Filtered vector spaces and algebras	119
 §7. Complexes and differential graded algebras	 121
1. Complexes	121
2. Differential graded algebras	122
3. Bicomplexes	124
4. Actions of graded Lie algebras	126
5. Homotopies	128
6. Acyclic and contractible differential graded algebras	129
7. Minimal differential graded algebras	131
8. The minimal model of a direct product	133
 §8. Cartan algebras	 134
1. Koszul algebras and Cartan algebras	134
2. Regular sequences	136
3. The Koszul formula	137
4. The minimal model of a Cartan algebra	139

5. The classification of Cartan algebras	141
6. Deficiencies of a polynomial ideal	143
7. Formal Cartan algebras	144
8. A class of indecomposable minimal Cartan algebras	146
Notes	146
Chapter 3. Real topology of compact Lie groups and their homogeneous spaces 148	
§9. Invariant exterior forms	149
1. Preliminaries	149
2. The main theorem	150
3. Right-invariant exterior forms on a Lie group	151
4. The chain complex of a Lie algebra	153
5. Bi-invariant forms	156
6. Invariant forms on a locally direct product	158
7. The cohomology bialgebra of a compact Lie group	160
8. The tangent algebra interpretation	163
9. The description of primitive elements	164
10. Invariant forms on homogeneous spaces	166
11. The cohomology of symmetric homogeneous spaces	167
§10. Weil algebras	168
1. The construction of the Weil algebra	168
2. The invariants	171
3. The vanishing of the cohomology	171
4. The transgression	172
5. The primitive elements and the transgression	173
6. The structure of symmetric invariants	175
7. The inverse of the transgression	176
8. The action of a homomorphism	178
9. The Weil algebra of a direct product	179
10. An explicit expression for the transgression	179
§11. Symmetric invariants	183
1. The reduction to invariants of the Weyl group	183
2. Computations for classical groups	186
3. A survey of fundamental properties of invariants of the Weyl group	189
4. On polynomial ideals generated by invariants	191
5. Simple subgroups with a big Coxeter number	193
6. Computations for exceptional groups	194
7. The homomorphism associated with a linear representation	196
§12. Cartan's theorem	198
1. A generalization of the Weil algebra	198

2. The Cartan algebra	201
3. Cartan's theorem	202
4. The minimal model and the ranks of the homotopy groups	205
5. The exterior grading	208
6. The deficiencies, the Samelson subalgebra and the formality	210
7. The homomorphism associated with the orbit mapping	212
8. The case when the stabilizer is not necessarily connected	213
 §13. Some special cases and examples	 214
1. Some sufficient formality conditions	214
2. Hopf homogeneous manifolds	216
3. The Euler characteristic	217
4. The homogeneous spaces defined by characters of a maximal torus	218
Notes	222
 Chapter 4. Inclusions between transitive transformation groups	 224
§14. Factorizations of compact Lie groups	224
1. Topological properties of factorizations	224
2. Factorizations of simple compact Lie groups	226
3. Factorizations of arbitrary compact Lie groups	229
4. Compact enlargements of transitive actions of simple groups	231
5. The ordered set of transitive actions	234
6. Factorizations with a discrete intersection	235
§15. Compact complex homogeneous spaces	238
1. Flag manifolds	238
2. Projective homogeneous spaces	240
3. Tits fibering	242
4. The connected automorphism group of a flag manifold	243
5. The group of biholomorphic transformations of a flag manifold	245
§16. The group of isometries of Riemannian homogeneous spaces	246
1. The simplest consequences of the classification of enlargements	246
2. The group of isometries of the natural Riemannian structure	248
3. Auxiliary lemmas	248
4. Proof of Theorem 3	250
Notes	253
 Chapter 5. On the classification of transitive actions	 254
§17. Some general properties of transitive actions	255
1. An estimate for the length of a transitive group	255
2. The topological meaning of the Dynkin index	255
3. Homogeneous spaces of simple compact Lie groups	258

4. The splitting of transitive actions on highly connected manifolds	259
5. Some remarks concerning the decomposability	261
§18. Homogeneous spaces of rank 1 or 2	263
1. Homogeneous spaces of rank 1	263
2. The list of all homogeneous spaces of rank 1	264
3. The classification of homogeneous spaces of rank 1	265
4. The list of homogeneous spaces of rank 2: the case of a simple group	267
5. The list of homogeneous spaces of rank 2: the case of a group of length 2	269
6. Transitive actions on a product of two spheres	273
7. Some examples	275
§19. Homogeneous spaces of positive Euler characteristic	276
1. Derivations of the cohomology algebra	276
2. The canonical decomposition	279
3. Transitive actions on the complex and the quaternion manifolds of flags	280
4. Transitive actions on the coset manifold modulo the maximal torus	281
5. The classification of homogeneous spaces of positive Euler characteristic	282
Notes	283
Bibliography	285
Index	295