Josef Honerkamp Hartmann Römer

Theoretical Physics

A Classical Approach

Translated by H. Pollack With 141 Figures and 39 Problems

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

Contents

1.	Intro	oduction	1
2.	New	tonian Mechanics	5
	2.1	Space and Time in Classical Mechanics	5
	2.2	Newton's Laws	11
	2.3	A Few Important Force Laws	15
	2.4	The Energy of a Particle in a Force Field	21
		2.4.1 Line Integrals	21
		2.4.2 Work and Energy	25
	2.5	Several Interacting Particles	29
	2.6	Momentum and Momentum Conservation	34
	2.7	Angular Momentum	41
	2.8	The Two-Body Problem	44
	2.9	The Kepler Problem	51
	2.10		59
		2.10.1 Relative Motion in the Scattering Process	60
		2.10.2 The Center of Mass System	
		and the Laboratory System	64
	2.11		71
	2.12	The Virial Theorem	76
	2.13	Mechanical Similarity	79
	2.14	Some General Observations About the Many-Body Problem	81
	Prob	olems	83
2	Lagr	rangian Methods in Classical Mechanics	87
Э.	3.1	A Sketch of the Problem and Its Solution	07
	3.1	in the Case of a Pendulum	87
	3.2	The Lagrangian Method of the First Type	89
	3.3	The Lagrangian Method of the Second Type	97
	3.4	The Conservation of Energy in Motions	91
	3.4	Which are Limited by Constraints	104
	3.5	Non-holonomic Constraints	112
	3.6	Invariants and Conservation Laws	117
	3.7	The Hamiltonian	123
	3.1	3.7.1 Lagrange's Equations and Hamilton's Equations	123
		J. 7.1 Lagrange's Equations and Transition's Equations	140

		3.7.2 Aside on the Further Development of Theoretical			
		Mechanics and the Theory of Dynamical Systems	128		
	3.8	The Hamiltonian Principle of Stationary Action	133		
		3.8.1 Functionals and Functional Derivatives	133		
		3.8.2 Hamilton's Principle	137		
		3.8.3 Hamilton's Principle for Systems			
		with Holonomic Constraints	139		
	Prob	blems	141		
4	Rigi	d Bodies	145		
	4.1	The Kinematics of the Rigid Body	145		
	4.2	The Inertia Tensor and the Kinetic Energy of a Rigid Body.	152		
		4.2.1 Definition and Elementary Properties	132		
		of the Inertia Tensor	152		
		4.2.2 Calculation of Inertia Tensors.	157		
	4.3	The Angular Momentum of a Rigid Body, Euler's Equations.	160		
	4.4	The Equations of Motion for the Eulerian Angles	167		
	• • •		176		
	Prot	blems	1/0		
5.		ion in a Noninertial System of Reference	179		
	5.1	Fictitious Forces in Noninertial Systems	179		
	5.2	Foucault's Pendulum	184		
6.	Line	Linear Oscillations			
	6.1	Linear Approximations About a Point of Equilibrium	190		
	6.2	A Few General Remarks About Linear Differential Equations.	192		
	6.3	Homogeneous Linear Systems with One Degree of Freedom			
		and Constant Coefficients	196		
	6.4	Homogeneous Linear Systems with n Degrees of Freedom			
		and Constant Coefficients	200		
		6.4.1 Normal Modes and Eigenfrequencies	200		
		6.4.2 Examples of the Calculation of Normal Modes	204		
	6.5	The Response of Linear Systems to External Forces	211		
	0.0	6.5.1 External Oscillating Forces	211		
		6.5.2 Superposition of External Harmonic Forces	214		
		6.5.3 Periodic External Forces	215		
		6.5.4 Arbitrary External Forces.	216		
	Prol	blems	218		
-	C1				
/.		ssical Statistical Mechanics	223		
	7.1	Thermodynamic Systems and Distribution Functions	224		
	7.2	Entropy	229		
	7.3	Temperature, Pressure, and Chemical Potential	233		
		7.3.1 Systems with Exchange of Energy	234		
		7.3.2 Systems with an Exchange of Volume	238		
		7.3.3 Systems with Exchanges of Energy and Particles	239		

		Contents	XI
	7.4	The Gibbs Equation and the Forms of Energy Exchange	241
	7.5	The Canonical Ensemble and the Free Energy	245
	7.6	Thermodynamic Potentials	252
	7.7	Material Constants	256
	7.8	Changes of State	260
		7.8.1 Reversible and Irreversible Processes	260
		7.8.2 Adiabatic and Non-adiabatic Processes	264
		7.8.3 The Joule–Thomson Process.	269
	7.9	The Transformation of Heat into Work, the Carnot Efficiency	271
		The Laws of Thermodynamics	278
		The Phenomenological Basis of Thermodynamics	282
		7.11.1 Thermodynamics and Statistical Mechanics	282
		7.11.2 The First Law of Thermodynamics	284
		7.11.3 The Second and Third Laws	285
		7.11.4 The Thermal and Caloric Equations of State	289
	7 12	Equilibrium and Stability Conditions	292
	2	7.12.1 Equilibrium and Stability in Exchange Processes	292
		7.12.2 Equilibrium, Stability and Thermodynamic Potentials	296
	Prol	blems	301
Q	Ann	lications of Thermodynamics	305
0.	8.1	Phase Transformations and Phase Diagrams	306
	8.2	The Latent Heat of Phase Transitions	309
	8.3	Solutions	317
	8.4	Henry's Law, Osmosis	320
	0.4	8.4.1 Henry's Law	321
		8.4.2 Osmosis	322
	8.5	Phase Transitions in Solutions	325
	0.5	8.5.1 Case (2): Miscibility in Only One Phase	325
		8.5.2 Case (3): Miscibility in Two Phases	330
	Prol	blem	331
			551
9.	Elen	nents of Fluid Mechanics	333
	9.1	A Few Introductory Remarks About Fluid Mechanics	333
	9.2	The General Balance Equation	337
	9.3	Particular Balance Equations	341
	9.4	Entropy Production, Generalized Forces, and Fluids	348
	9.5	The Differential Equations of Fluid Mechanics	354
	9.6	A Few Elementary Applications	
		of the Navier-Stokes Equations	359
	Prol	blem	365
10.	The	Most Important Linear Partial Differential Equations of Physics	367
		General Considerations	367
		10.1.1 Types of Linear Partial Differential Equations,	
		the Formulation of Boundary	
		and Initial Value Problems	367

		10.1.2 Initial Value Problems in \mathbb{R}^D	371
		10.1.3 Inhomogeneous Equations and Green's Functions	374
	10.2	Solutions of the Wave Equation	376
		Boundary Value Problems	380
		10.3.1 Initial Observations	380
		10.3.2 Examples of Boundary Value Problems	381
		10.3.3 The General Treatment of Boundary Value Problems	386
	10.4	The Helmholtz Equation in Spherical Coordinates,	
		Spherical Harmonics, and Bessel Functions	388
		10.4.1 Separation of Variables	389
		10.4.2 The Angular Equations, Spherical Harmonics	390
		10.4.3 The Radial Equation, Bessel Functions	395
		10.4.4 Solutions of the Helmholtz Equation	398
		10.4.5 Supplementary Considerations	399
	Prob	blems	401
			.01
11	Floo	two stations	405
11.		The Basic Equations of Electrostatics	403
	11.1	<u>-</u>	405
		and Their First Consequences	
			405 407
		11.1.2 Electrostatic Potential and the Poisson Equation	407
		11.1.3 Examples and Important Properties	410
	11.0	of Electrostatic Fields	410
	11.2	Boundary Value Problems in Electrostatics,	412
		Green's Functions	413 413
		11.2.1 Dirichlet and Neumann Green's Functions	413
		11.2.2 Supplementary Remarks	417
	112	on Boundary Value Problems in Electrostatics	417
		The Calculation of Green's Functions, the Method of Images	420
	11.4	The Calculation of Green's Functions,	407
	11.	Expansion in Spherical Harmonics	427
		Localized Charge Distributions, the Multipole Expansion	431
		Electrostatic Potential Energy	434
	Pro	blems	437
		ring Charges, Magnetostatics	439
	12.1	The Biot-Savart Law, the Fundamental Equations	400
		of Magnetostatics	439
		12.1.1 Electric Current Density and Magnetic Fields	439
		12.1.2 The Vector Potential and Ampère's Law	443
		12.1.3 The SI-System of Units in Electrodynamics	446
	12.2	Localized Current Distributions	447
		12.2.1 The Magnetic Dipole Moment	447
		12.2.2 Force, Potential, and Torque in a Magnetic Field	450

	Contents
2 Time Dependent Fleetromes	netic Fields
	ransformations
	s in a Vacuum, the Polarization
	s, the Influence of Sources
	tromagnetic Field
	gy and the Poynting Vector
	s of the Radiation Field
	ne Electric Field
••	ne Magnetic Field
	Interaction Energy
	Electromagnetic Field
13.6 The Womentum of the	Electromagnetic Field
4. Elements of the Electrodyna	mics of Continuous Media
14.1 The Macroscopic Max	well Equations
14.1.1 Microscopic and	Macroscopic Fields
14.1.2 The Average Ch	arge Density
and Electric Disp	olacement
14.1.3 The Average Cu	
	c Field Strength
	Continuous Media
	Continuous Media
14.4 Plane Waves in Matter	, Wave Packets
14.4.1 The Frequency	Dependence of Susceptibility
14.4.2 Wave Packets, I	Phase and Group Velocity
	on at Plane Boundary Surfaces
	itions, the Laws of Reflection
	ons
14.5.3 Special Effects o	f Reflection and Refraction
nnandicas	
	er Integrals
	and Fourier Transforms
•	s Functions
Ziz Citting I unitions	vilinear Coordinates
	Scalar Fields
	Volume Integrals
1.2 Line, Surface, and	TOTALIN TIMESTAID

XIV Contents

F.3	Stokes's Theorem	547
F.4	Gauss's Theorem	548
F.5	Applications of the Integral Theorems	550
F.6	Curvilinear Coordinates	551
Problem	ns	555
References .		557
Subject Inde	·x	561