

Contents

<i>Preface to the Third Edition</i>	page v
<i>Preface to the Second Edition</i>	vii
<i>Preface to the First Edition</i>	ix

Chapter 1. A COMPARISON OF VARIOUS KINDS OF GEOMETRY

1·1 Introduction, <i>p. 1.</i>	1·2 Parallel projection, <i>p. 1.</i>	1·3 Central projection, <i>p. 2.</i>
1·4 The line at infinity, <i>p. 4.</i>	1·5 Desargues's two-triangle theorem, <i>p. 6.</i>	1·6 The directed angle, or cross, <i>p. 8.</i>
1·7 Hexagramma mysticum, <i>p. 9.</i>		
1·8 An outline of subsequent work, <i>p. 10.</i>		

Chapter 2. INCIDENCE

2·1 Primitive concepts, <i>p. 12.</i>	2·2 The axioms of incidence, <i>p. 14.</i>	2·3 The principle of duality, <i>p. 15.</i>
2·4 Quadrangle and quadrilateral, <i>p. 17.</i>	2·5 Harmonic conjugacy, <i>p. 18.</i>	2·6 Ranges and pencils, <i>p. 21.</i>
2·7 Perspectivity, <i>p. 21.</i>		
2·8 The invariance and symmetry of the harmonic relation, <i>p. 23.</i>		

Chapter 3. ORDER AND CONTINUITY

3·1 The axioms of order, <i>p. 25.</i>	3·2 Segment and interval, <i>p. 27.</i>	3·3 Sense, <i>p. 29.</i>
3·4 Ordered correspondence, <i>p. 30.</i>	3·5 Continuity, <i>p. 34.</i>	3·6 Invariant points, <i>p. 34.</i>
3·7 Order in a pencil, <i>p. 36.</i>	3·8 The four regions determined by a triangle, <i>p. 37.</i>	

Chapter 4. ONE-DIMENSIONAL PROJECTIVITIES

4·1 Projectivity, <i>p. 39.</i>	4·2 The fundamental theorem of projective geometry, <i>p. 41.</i>	4·3 Pappus's theorem, <i>p. 43.</i>
4·4 Classification of projectivities, <i>p. 45.</i>	4·5 Periodic projectivities, <i>p. 48.</i>	4·6 Involution, <i>p. 48.</i>
4·7 Quadrangular set of six points, <i>p. 52.</i>	4·8 Projective pencils, <i>p. 54.</i>	

Chapter 5. TWO-DIMENSIONAL PROJECTIVITIES

5·1 Collineation, <i>p. 55.</i>	5·2 Perspective collineation, <i>p. 57.</i>	5·3 Involutory collineation, <i>p. 59.</i>
5·4 Correlation, <i>p. 61.</i>	5·5 Polarity, <i>p. 62.</i>	5·6 Polar and self-polar triangles, <i>p. 66.</i>
5·7 The self-polarity of the Desargues configuration, <i>p. 68.</i>		
5·8 Pencil and range of polarities, <i>p. 70.</i>		
5·9 Degenerate polarities, <i>p. 71.</i>		

Chapter 6. CONICS

6·1 Historial remarks, *p.* 73. **6·2** Elliptic and hyperbolic polarities, *p.* 74. **6·3** How a hyperbolic polarity determines a conic, *p.* 76. **6·4** Conjugate points and conjugate lines, *p.* 78. **6·5** Two possible definitions for a conic, *p.* 80. **6·6** Construction for the conic through five given points, *p.* 83. **6·7** Two triangles inscribed in a conic, *p.* 85. **6·8** Pencils of conics, *p.* 87.

Chapter 7. PROJECTIVITIES ON A CONIC

7·1 Generalized perspectivity, *p.* 92. **7·2** Pascal and Brianchon, *p.* 94. **7·3** Construction for a projectivity on a conic, *p.* 96. **7·4** Construction for the invariant points of a given hyperbolic projectivity, *p.* 98. **7·5** Involution on a conic, *p.* 99. **7·6** A generalization of Steiner's construction, *p.* 102. **7·7** Trilinear polarity, *p.* 103.

Chapter 8. AFFINE GEOMETRY

8·1 Parallelism, *p.* 105. **8·2** Intermediacy, *p.* 106. **8·3** Congruence, *p.* 107. **8·4** Distance, *p.* 109. **8·5** Translation and dilatation, *p.* 113. **8·6** Area, *p.* 114. **8·7** Classification of conics, *p.* 117. **8·8** Conjugate diameters, *p.* 119. **8·9** Asymptotes, *p.* 121. **8·10** Affine transformations and the Erlangen programme, *p.* 124.

Chapter 9. EUCLIDEAN GEOMETRY

9·1 Perpendicularity, *p.* 126. **9·2** Circles, *p.* 128. **9·3** Axes of a conic, *p.* 131. **9·4** Congruent segments, *p.* 133. **9·5** Congruent angles, *p.* 134. **9·6** Congruent transformations, *p.* 138. **9·7** Foci, *p.* 142. **9·8** Directrices, *p.* 144.

Chapter 10. CONTINUITY

10·1 An improved axiom of continuity, *p.* 147. **10·2** Proving Archimedes' axiom, *p.* 148. **10·3** Proving the line to be perfect, *p.* 149. **10·4** The fundamental theorem of projective geometry, *p.* 152. **10·5** Proving Dedekind's axiom, *p.* 153. **10·6** Enriques's theorem, *p.* 153.

Chapter 11. THE INTRODUCTION OF COORDINATES

11·1 Addition of points, *p.* 156. **11·2** Multiplication of points, *p.* 158. **11·3** Rational points, *p.* 161. **11·4** Projectivities, *p.* 161. **11·5** The one-dimensional continuum, *p.* 163. **11·6** Homogeneous coordinates, *p.* 165. **11·7** Proof that a line has a linear equation, *p.* 165. **11·8** Line coordinates, *p.* 167.

Chapter 12. THE USE OF COORDINATES

12·1 Consistency and categoricalness, *p.* 169. **12·2** Analytic geometry, *p.* 171. **12·3** Verifying the axioms of incidence, *p.* 173. **12·4** Verifying the axioms of order

and continuity, *p.* 174. **12·5** The general collineation, *p.* 178. **12·6** The general polarity, *p.* 181. **12·7** Conics, *p.* 185. **12·8** The affine plane: affine and areal coordinates, *p.* 191. **12·9** The Euclidean plane: Cartesian and trilinear coordinates, *p.* 193.

<i>Appendix 1.</i> The Complex Projective Plane	<i>page</i> 200
<i>Appendix 2.</i> How to Use Mathematica® by George Beck	202
<i>Bibliography</i>	214
<i>Index</i>	217