TABLE OF CONTENTS

B. Benciolini	. 1
LECTURES	
Physics of the Ocean Circulation C. Wunsch	
1. The Ocean Circulation Basic Physical Elements The Steady Circulation Idea The Geostrophic Approximation Scaling Water Masses Steady Circulation Pictures 2. The Steady Ocean Circulation 2.1 Making a Quantitative, Consistent Picture 2.2 Deviations from Geostrophy 3. Time Dependence. The Mesoscale 4. Puzzles of Climate and the Ocean 4.1 The Ocean in the Climate System 4.2 Long-Term 4.3 Shorter Term Including the Sealevel Problem 4.4 Heat and Moisture Fluxes 4.5 - Observations - The Future 5. Quantitative Estimation Methods - Including Altimetry A Final Word References	11 21 31 36 39 41 43 43 50 56 60 62 65 70 73 74 76 93
Theory of Ocean Tides with application to Altimetry D.E. Cartwright	
1. Historical Introduction 2. The Tide Potential and its Uses 2.1 Expansion of the Primary Potential Expansions in time and frequency 2.2 Relating Observed Tidal Phenomena to the Potential 2.3 Secondary Tide Potentials 3. Hydrodynamic Models 3.1 Dynamic Equations and Idealised Solutions Free waves in flat rotating seas Solution for tides in a hemispherical sea 3.2 Realistic Global Ocean Models Friction Loading potentials Normal modes and Proudman Functions	105 107 110 113 115 116 118 120 120

	Data assimilation	123
4.	Tidal Energetics and Orbital Evolution	124
	4.1 Energy Dissipation in the Geosphere	124
	A. Dissipation in the ocean	126
	B. Work done by the external tide-generating forces	127
	4.2 Satellite Orbitography and Astronomical Methods	129
	C. Perturbations of satellite orbits	129
	(D.E). Direct observations of lunar acceleration	132
_	(D,E). Direct observations of funar acceleration	12/
5.	Directions for Future Research	104
	5.1 Areas Where Improved Knowledge is Needed	134
	5.2 Some Aspects of the Tide Signal in Altimetry	135
	Components of the signal	135
	Aliassing	136
	Spatial resolution	138
	The altimetric tide	138
Do:	ferences	130
NE	references	
	antifying Time-Varying Oceanographic Signals with Altimetry	
٧.	Zlotnicki	
1.	Introduction	144
2.	Sea Level and Ocean Currents	146
	2.1 Basic altimetric data handling	146
	2.2 Gulf stream time-varying surface currents	
	2.3 Gulf stream time-varying deep currents	151
	2.4 Weak surface currents: the Cape Verde region	156
	2.5 Equatorial surface currents	157
	2.5 Equatorial surface currents	107
_	2.6 Closing comments	100
3.	Total Surface Currents in the Gulf Stream	162
	3.1 Meandering. The shape of the current's sea level "step"	162
	3.2 Estimating parameters of the signal's shape	164
	3.3 The two layer model to estimate total transport	165
	3.4 What is new here?	166
4	Global Annual Cycle	167
٠.	4.1 Motivation: the simplest large scale signal	167
	4.2 Computational scheme	167
	4.3 Tidal aliasing	107
	4.3 Itual allasing	102
	4.4 Orbit error, water vapor, sea state bias effects	1/1
	4.5 N.Equatorial countercurrent. Somali current	173
	4.6 Heating and cooling	174
	4.7 The ACC	174
	4.8 Summary	175
5.	Equatorial Sea Level Assimilation and Winds	175
٠.	5.1 Getting rigorous about errors in data and models	170
	5.2 The equatorial beta plane	170
	5.3 Equatorially-trapped waves	1/0
	5.5 Equator ratiy—trapped waves	1/8
	5.4 The Miller and Cane formulation	180
	5.5 Kalman filter and smoother data assimilation	181
	5.6 Error covariances of the altimetric data	107
	5.8 Can anything be said about the wind?	184
Re	ferences	189
,		TO.

Principle of Satellite Altimetry and Elimination of Radial Orbit Errors R. Rummel 5. On the Separation of Sea Surface Topography and Geoid or the Orbit Choice and the Theory of Radial Orbit Error for Altimetry G. Balmino 3. Temporal Representation of the Radial Perturbations due to the 3.1 Radial Perturbations of Zero and First Order in Eccentricity 283 4. Temporal Characteristics of the Radial Perturbations and Errors 4.3 The Radial Orbit Errors from Geopotential Coefficient 5. Spatial Representation and Characteristics of the Radial Orbit 5.2 Radial Perturbations by Coefficient, by Degree and by Order 302 5.3 Radial Orbit Errors in the Space Domain Based on Geopotential

Theory of Geodetic B.V.P.s Applied to the Analysis of Altimetric Data F. Sansò

1.	Introduction	. 318
	1.1 The rising of B.V.P.'s in Geodesy	. 318
	1.2 Examples of different B.V. operators for land and sea	. 318
_	1.3 Classification of gravimetric B.V.P.'s	. 321
2.	The reduction of the original B.V.P.s to linearized spherical problems	. 322
	2.1 Linearization procedures	. 323
	2.2 A direct iterative solution to account for the irregular shape	
	of the boundary	. 327
_	2.3 Ellipsoidal effects	. 328
3.	Some recalls of mathematics	332
	3.1 Hilbert spaces	333
	3.2 Bases; linear independence; orthogonal bases; biorthogonal	
	sequences	335
_	3.3 Sobolev spaces of harmonic functions; duality	340
4.	The analysis of the Altimetry Gravimetry I problem	345
	4.1 The analysis of a simplified B.V.P	345
_	4.2 Uniqueness and existence of the solution of AG I	350
ъ.	The analysis of the Altimetry Gravimetry II problem	352
	5.1 Transformation of the problem into a Fredholm equation	353
_	5.2 Uniqueness and existence of the solution	355
ь.	Applications	357
	6.1 The application of AG 1 theory to the construction of	
	global models	358
	"local" solutions	
7	Conclusions	360
/ -	pendix	362
ΑP.	1 Convergency of the "approximating sequence" to the right solution	363
Δ.	2 An example with two spheres	365
D.	ferences	300
NE	161 011003	3/1
He	e of Altimeter Data in Estimating Global Gravity Models	
R.	H. Rapp	
1.	Introduction	374
2.	Fundamental Gravimetric Relationships	275
	2 1 Masic Equations	~
	2.2 Consideration of Systematic Effects	~~~
	2.2.2 Ellipsoidal Corrections: ε_h , ε_h , ε_h , ε_h . 2.2.3 Second order vertical gradient of the normal gravity: δg_{h^2} . 2.2.4 Analytical downward continuation: g_h	380
	2.2.3 Second order vertical gradient of the normal gravity: &g.	381
	2.2.4 Analytical downward continuation: g ₁	201
	/ 4 SIMBATY	
3.	Saletitle Alchielet data and arbit improvement	
	3.1 Dasic riouel	
	5.4 The some matrix solution with satellite Altimeter hata	391
	3.5. The Weighting Droblem	J J I

4.0 The Estimation of Geoid Undulations and Gravity Anomalies from Satellite Altimeter Data	394
4.1 The Adjusted Sea Surface Heights	394
4.2 The Estimation Procedure for Point Values	
4.3 The Estimation Procedure for Mean Values	397
4.4 The Formation of a Global 30' Anomaly Data File	398
5. High Degree Expansions Using Satellite Altimeter Data	398
5.1 Solution Based on Section 2 Discussion	
5.2 Solution Based on Section 3 Discussion	
5.3 An Approximately Rigorous Combination Solution	
6.0 A Comparison of Four Potential Coefficient Models	405 406
7. Conclusion	
References	
nere cinces	717
SEMINARS	
The Direct Estimation of the Potential Coefficients by Biorthogonal Sequences	
M.A. Brovelli and F. Migliaccio	
1. Introduction	121
2. The Altimetry-Gravimetry problems	オムユ
3. The estimate of the geopotential coefficients with the first	722
Altimetry-Gravimetry problem	121
4. A numerical experiment	
References	
NOTE CITICOS	+41
Frozen Orbits and their Application in Satellite Altimetry	
E.J.O. Schrama	
Summary	443
Introduction4	443
Deep resonance	444
The real world and Cook's theory	447
Consequences for altimetry	149
References	
Integration of Gravity and Altimeter Data by Optimal Estimation Techniques	
P. Knudsen	
1. Introduction	453
2. The Mathematical Model	
3. Inversion of Altimetry	
4. Local Empirical Covariance Functions	
5. On Redundancy and Data Selection	
6. A Regional Solution in the Norwegian Sea	160 160
Discussion	
Discussion	

Comparing the UK Fine Resolution Antarctic Model (FRAM) with 3-years of Geosat Altimeter Data

R.C.V. Feron

	Introduction	
	Short FRAM Description	
	Altimeter Data Processing	
4.	Three Southern Ocean Current Systems	
	4.1 The Agulhas Current	470
	4.2 The East Australian Current	470
	4.3 The Brazil Malvinas Confluence	
5.	Analysis Techniques	471
•	5.1 Harmonic Analysis	
	5.2 Principal Component Analysis	472
6.	Application	
	6.1 Harmonic Analysis	472
	6.1.1 Brazil Malvinas Confluence	472
	6.1.2 Agulhas Current	
	6.1.3 East Australian Current	
	6.2 Modal Decomposition	
	6.2.1 Brazil Malvinas Confluence	475
	6.2.2 Agulhas Current	475
	6.2.3 East Australian Current	
7.	Conclusions	
Do	forences	479