Contents

Liquids Liquids			
Preface	v		
Color Insert follows page 240			
Chapter V. Introduction to Lubricated Pipelining	1		
V.1 Nature of the Problem	1		
V.2 Chronology of Experiments and Applications	3		
V.3 Effects of Gravity	10		
V.4 Stability Studies	11		
V.5 Plan of Chapters VI - VIII, and List of Acronyms	16		
Chapter VI. Lubricated Pipelining: Linear Stability Analysis	17		
VI.1 Neutral Curves, Waves of Fastest Growth, Comparison with	18		
Experiments of CGH	18		
VI.1 (a) Introduction	20		
VI.1 (b) The Equations and Basic Flow	21		
VI.1 (c) Perturbation Equations	22		
VI.1 (d) Dimensionless Equations and Parameters	24		
VI.1 (e) Normal Modes	28		
VI.1 (f) Pseudospectral Numerical Method	30		
VI.1 (g) Axisymmetric and Nonaxisymmetric Disturbances	31		
VI.1 (h) Perturbation Solution for Long Waves	34		
VI.1 (i) Comparison With Results of Hooper and Boyd	36		
VI.1 (j) $m \to 0$ for $\mathbb{R}_1 \neq 0$ is a Singular Limit	38		
VI.1 (k) The Limit $\mathbb{R}_1 \to 0$ and $m \neq 0$	38		
VI.1 (ℓ) Neutral Curves	40		
VI.1 (m) Comparison with Experiments	48		
VI.1 (n) Conclusions			
VI.2 Energy Analysis of the Waves of Fastest Growth	50		
VI.2 (a) Introduction	50		
VI.2 (b) The Basic Flow	52		
VI.2 (c) Perturbation Equations and Normal Modes	53		

x

•	VI.2 (d) Finite Element Formulation	54
•	VI.2 (e) Energy Analysis	56
	VI.2 (f) Comparison with Previous Results for Two-Layer	
	Core-Annular Flow	59
,	VI.2 (g) The Viscous Core : $m < 1$	59
	VI.2 (h) The Viscous Liquid is on the Wall: $m > 1$	65
	VI.2 (i) Stability of Thin Liquid Threads	70
	VI.2 (j) Stability of Core-Annular Flow in Three Layers	
	(Hydrophobic Pipe Walls)	74
	VI.2 (k) Conclusions	82
	VI.2 (ℓ) Comparison with Field Data: Scale-up, Transition to	
	Water in Oil (w/o) Emulsions	84
	VI.2 (m) Stability of Rotating Core-Annular Flow	93
VI.3	Stability of Core-Annular Flow with a Small Viscosity Ratio	94
	VI.3 (a) Formulation of the Problem	94
	VI.3 (b) Case I: The Critical Point is Far Away from the Inter-	face 97
	VI.3 (c) Case II: The Critical Point is Close to the Interface	104
	VI.3 (d) Numerical Results	108
	VI.3 (e) Growth Rate and Wave Velocity	112
	VI.3 (f) Conclusions	113
Char	oter VII. Core-Annular Flow in Vertical Pipes	114
-	Introduction	114
	2 Basic Flow	116
	3 Experiments	119
	VII.3 (a) Free Fall	121
	VII.3 (b) Forced Flows	122
VII.4	Disturbance Equations	127
	Numerical Method	129
	B Density Stratification and Interfacial Gravity	130
	Long Waves	136
	Neutral Curves: Free Fall Under Gravity	138
	Neutral Curves: Forced Flows	145
	10 Conclusions on Linear Stability	152
	11 Notation for Sections VII.12-21	154
VII.1	2 Properties of Fluids Used in Experiments	155
	3 Experimental Set-Up and Procedures	156
	14 Hold-up Ratio	160
	15 Flow Types	164
	16 Flow Charts	176
VII.1	17 Pressure Drop Measurements	180
	18 Ideal and Measured Efficiency of Lubrication	183
	19 Friction Factor and Reynolds Number for Lubricated	
	Pipelining	192
VII	20 Comparison of Experiments with Theory	202

	Contents	xi
	VII 90 (a) For Fired Values of V and V	202
	VII.20 (a) For Fixed Values of V_o and V_w	202
3.7TT 0.1	VII.20 (b) For Fixed Values of V_o and a	
V11.21	Summary and Discussion	221
Chapte	er VIII. Nonlinear Stability of Core-Annular Flow	226
VIII.1		226
VIII.2	Nonlinear Evolution of Axisymmetric Disturbances	229
VIII.3	Multiple Scales, Wave Packets and Ginzburg-Landau Equations	3235
VIII.4	Numerical Scheme	241
VIII.5	Nonlinear Stability of Core-Annular Flow	244
VIII.6	Small Capillary Numbers	251
VIII.7	Large Capillary Numbers	254
VIII.8	Experiments	255
VIII.9	Summary and Discussion of the Application of	
	Ginzburg-Landau Equations to Core-Annular Flow	259
VIII.10	0 Nonlinear Amplitude Equations for Long Waves	261
VIII.1	1 Amplitude Equation of Hooper and Grimshaw	262
VIII.1	2 Rupture of Thin Films	264
	VIII.12 (a) Long Waves	265
	VIII.12 (b) Lubrication Theory	266
VIII.13	3 Amplitude Equations of Frenkel et al and Papageorgiou et al	267
VIII.1	4 Long-Wave Expansions for the Amplitude Equation (13.6)	
	When $\mathbb{R}_1 = \hat{O}(1)$	271
VIII.1	5 Exact Stability Results for Long Waves	272
	6 Comparison of Lubrication Theory with Exact Theory	278
VIII.1	7 Discussion	287
C14	IV Waster Divers of One Divid in Another in Free Fell	288
-	er IX. Vortex Rings of One Fluid in Another in Free Fall	288
	Introduction	289
	Classical Vortex Rings	292
	The Normal Stress Balance	294
	Stokes Flow Around a Drop	
	Dimensionless Parameters	. 299
	Physical and Other Properties	301
	Distortion of the Spherical Drop	304
	Formation of Rings	308
	Two-Fluid Systems That Do and Do Not Form Vortex Rings	313
IX.10	Effect of Drop Size and Surfactant	318
Chapt	er X. Miscible Liquids	324
$X.1^{-}N$	Motivation and Problem Statement	325
X.2 I	Historical Introduction	334
X.3 I	Dynamic and Instantaneous Interfacial Tension	337
	Mixtures of Incompressible Miscible Liquids and	
F	Korteweg's Theory	344

ĸii	Contents
K11	Contents

X.4 (a) Compressible Fluids	344
X.4 (b) Mixtures of Incompressible Fluids	346
X.4 (c) Diffusion Equation for Mixtures of Miscible	
Incompressible Fluids	349
X.4 (d) Solenoidal Fields for Simple Mixtures	351
X.4 (e) Diffusion in Simple Mixtures	357
X.4 (f) Korteweg Stresses and the Equations of Motion	359
X.5 Motionless Solutions and Steady Solutions	360
X.6 Falling Drops, Rising Bubbles and Plumes	361
X.7 Isothermal Problems	363
X.8 One-Dimensional Mixing Layer Problems	366
X.9 Jump of the Normal Stress across a Plane Mixing Layer	367
X.10 Spreading of a Spherical Diffusion Front and Korteweg Stresses	369
X.11 The Effect of Convection on Diffusion	372
X.12 Miscible Displacement in a Hele-Shaw Cell	374
X.13 Stability of Steady Miscible Displacement	379
X.14 Asymptotic Analysis of Stability	382
X.15 Growth Rates and Neutral Curves	384
X.16 Structure of Two-Dimensional Problems	389
X.17 Conclusions and Discussion	394
Appendix	396
Appendix	
References	401
Index	431
Contents of Part I: Mathematical Theory and Application	ns
Preface	
Chapter I. Introduction	
I.1 Examples	
I.1 (a) Fingering	
I.1 (b) Lubricated Pipelining	
I.1 (c) Segregation and Lubrication of Solids in Liquids	
I.1 (d) Lubricated Pipelining of Solid Particulates	
I.1 (e) Manufacturing	
I.1 (f) Lubricated Extensional Flows: A Rheological Application	
I.1 (g) Microgravity Through Density Matching	
I.1 (h) Geophysical Applications	
I.1 (i) Transient Flow of Two Immiscible Liquids in a	
Rotating Container	
I.2 Formulation of Equations	
I.2 (a) Transport Identities	
I.2 (b) Balance of Momentum	

- I.2 (c) Balance of Energy
- I.2 (d) Boundary Conditions
- I.2 (e) Summary
- I.3 Nonuniqueness of Steady Solutions
 - I.3 (a) Bubbles
 - I.3 (b) Parallel Shear Flows
 - I.3 (c) Two-Fluid Convection
 - I.3 (d) Rotating Couette Flow
 - I.3 (e) Nonuniqueness and Stability
 - I.3 (f) Nonuniqueness and Variational Principles

Chapter II. Rotating Flows of Two Liquids

- II.1 Rigid Motions of Two Liquids Rotating in a Cylindrical Container
 - II.1 (a) Steady Rigid Rotation of Two Fluids
 - II.1 (b) Disturbance Equations
 - II.1 (c) Energy Equation for Rigid Motions of Two Fluids
 - II.1 (d) The Interface Potential
 - II.1 (e) Poincaré's Inequality and the Energy Inequality
 - II.1 (f) Minimum of the Potential
 - II.1 (g) Spatially Periodic Connected Interfaces
- II.2 The Minimum Problem for Rigid Rotation of Two Fluids
 - II.2 (a) The Cylindrical Interface
 - II.2 (b) Mathematical Formulation of the Minimum Problem
 - II.2 (c) Analysis of the Minimum Problem
 - II.2 (d) Periodic Solutions, Drops and Bubbles
 - II.2 (e) All the Solutions with J < 4 Touch the Cylinder
- II.3 Experiments on Rigid Rotation of Two Fluids in a

Cylindrical Container

- II.3 (a) Experiments with Heavy Fluid Outside the Spinning Rod Tensiometer
- II.3 (b) Experiments with Heavy Fluid Inside Coating Flows
- II.4 Experiments with Liquids on Immersed and Partially Immersed

Rotating Rods. Rollers, Sheet Coatings and Emulsions

- II.4 (a) Rollers
- II.4 (b) Sheet Coatings
- II.4 (c) Fingering Instabilities and the Formation of Emulsions
- II.4 (d) Centrifugal Instabilities
- II.5 Taylor-Couette Flow of Two Immiscible Liquids
 - II.5 (a) Experiments and Parameters
 - II.5 (b) Circular Couette Flows
 - II.5 (c) Rollers
 - II.5 (d) Emulsions, Tall Taylor Cells, Cell Nucleation
 - II.5 (e) Phase Inversion
 - II.5 (f) Phase Separation
 - II.5 (g) Phase Inversion and Phase Separation

xiv	Contents
II.5 (h) Chaotic Trajectories of Oil Bubbles in an Unstable
	Water Cell
II.6 Two-I	Dimensional Cusped Interfaces
) Introduction
) Experiments
) Theory
) Numerical Results
) Conclusions
Chapter I	II. The Two-Layer Bénard Problem
III.1 Intro	
III.2 Form	ulation of Equations
	rized Stability Problem
	(a) Governing Equations
III.3	(b) The Adjoint Equations
	(c) Numerical Scheme
	(d) Example of Hopf Bifurcation
	nptotic Analysis for Long Waves
	nptotic Analysis for Short Waves
	ds with Similar Properties
	(a) Close to Criticality for One Fluid
	(b) Low Rayleigh Numbers
	(c) Summary
	inear Bifurcation Analysis
	(a) Problem in Finite Dimension
	(b) Reduction to Finite Dimension
	(c) Transformation to Birkhoff Normal Form
III.7	(d) Results and Discussion
Chapter I	V. Plane Channel Flows
IV.1 Intr	
IV.2 Gov	erning Equations for Two-Layer Couette Flow
	ire's Theorem
IV.4 Asy	mptotic Analysis for Long Waves
IV.	4 (a) Two-Layer Couette Flow
IV.	1 (b) Two-Layer Couette-Poiseuille Flow
IV.	4 (c) Two-Layer Semi-Infinite Couette Flow
IV.5 Asy	mptotic Analysis for Short Waves
	mptotic Analyses for:
IV.	6 (a) The Thin-Layer Effect

IV.6 (b) High Reynolds Numbers

IV.8 (b) Bifurcation Analysis

IV.8 Nonlinear Analysis

IV.7 Analysis of Stability in the General Case: Energy Equation

IV.8 (a) Weakly Nonlinear Amplitude Equations for Long Waves

IV.9 Two-Layer Couette Flow of Upper-Convected Maxwell Liquids

IV.9 (a) Governing Equations

IV.9 (b) Asymptotic Analysis for Short Waves

IV.9 (c) Numerical Study of the Spectrum

IV.9 (d) Wet Slip and Extrudate Sharkskin Formation

IV.10 Liquid-Vapor Films between Heated Walls

IV.10 (a) Governing Equations and Interface Conditions for Two-Phase Flow of Vapor and Liquid

IV.10 (b) Governing Equations for the Inclined Channel

IV.10 (c) Basic Flow

IV 10 (d) Equations for Linear Stability Analysis

IV.10 (e) Dimensionless Variables and Normal Modes

IV.10 (f) Two Different Interfacial Temperature Conditions

IV.10 (g) Energy Analysis

IV.10 (h) Horizontal Case

IV.10 (i) Vertical Case

IV.10 (j) Conclusions

References

Index