

Contents

Contents of *Part I: Mathematical Theory and Applications*

Preface	v
Color Insert follows page 240	
Chapter I. Introduction	1
I.1 Examples	2
I.1 (a) Fingering	2
I.1 (b) Lubricated Pipelining	3
I.1 (c) Segregation and Lubrication of Solids in Liquids	5
I.1 (d) Lubricated Pipelining of Solid Particulates	7
I.1 (e) Manufacturing	11
I.1 (f) Lubricated Extensional Flows: A Rheological Application	13
I.1 (g) Microgravity Through Density Matching	14
I.1 (h) Geophysical Applications	15
I.1 (i) Transient Flow of Two Immiscible Liquids in a Rotating Container	16
I.2 Formulation of Equations	18
I.2 (a) Transport Identities	19
I.2 (b) Balance of Momentum	22
I.2 (c) Balance of Energy	23
I.2 (d) Boundary Conditions	25
I.2 (e) Summary	26
I.3 Nonuniqueness of Steady Solutions	27
I.3 (a) Bubbles	27
I.3 (b) Parallel Shear Flows	28
I.3 (c) Two-Fluid Convection	31
I.3 (d) Rotating Couette Flow	31
I.3 (e) Nonuniqueness and Stability	31
I.3 (f) Nonuniqueness and Variational Principles	32

Chapter II. Rotating Flows of Two Liquids	44
II.1 Rigid Motions of Two Liquids Rotating in a Cylindrical Container	45
II.1 (a) Steady Rigid Rotation of Two Fluids	45
II.1 (b) Disturbance Equations	49
II.1 (c) Energy Equation for Rigid Motions of Two Fluids	49
II.1 (d) The Interface Potential	52
II.1 (e) Integrability of the Energy	58
II.1 (f) Minimum of the Potential	60
II.1 (g) Spatially Periodic Connected Interfaces	62
II.2 The Minimum Problem for Rigid Rotation of Two Fluids	63
II.2 (a) The Cylindrical Interface	63
II.2 (b) Mathematical Formulation of the Minimum Problem	67
II.2 (c) Analysis of the Minimum Problem	68
II.2 (d) Periodic Solutions, Drops and Bubbles	76
II.2 (e) All the Solutions with $J < 4$ Touch the Cylinder	76
II.3 Experiments on Rigid Rotation of Two Fluids in a Cylindrical Container	78
II.3 (a) Experiments with Heavy Fluid Outside – the Spinning Rod Tensiometer	78
II.3 (b) Experiments with Heavy Fluid Inside – Coating Flows	85
II.4 Experiments with Liquids on Immersed and Partially Immersed Rotating Rods. Rollers, Sheet Coatings and Emulsions	93
II.4 (a) Rollers	94
II.4 (b) Sheet Coatings	101
II.4 (c) Fingering Instabilities and the Formation of Emulsions	103
II.4 (d) Centrifugal Instabilities	110
II.5 Taylor-Couette Flow of Two Immiscible Liquids	111
II.5 (a) Experiments and Parameters	115
II.5 (b) Circular Couette Flows	117
II.5 (c) Rollers	119
II.5 (d) Emulsions, Tall Taylor Cells, Cell Nucleation	119
II.5 (e) Phase Inversion	127
II.5 (f) Phase Separation	127
II.5 (g) Phase Inversion and Phase Separation	130
II.5 (h) Chaotic Trajectories of Oil Bubbles in an Unstable Water Cell	133
II.6 Two-Dimensional Cusped Interfaces	140
II.6 (a) Introduction	141
II.6 (b) Experiments	144
II.6 (c) Theory	150
II.6 (d) Numerical Results	157
II.6 (e) Conclusions	168

Chapter III. The Two-Layer Bénard Problem	170
III.1 Introduction	170
III.2 Formulation of Equations	178
III.3 Linearized Stability Problem	187
III.3 (a) Governing Equations	187
III.3 (b) The Adjoint Equations	188
III.3 (c) Numerical Scheme	191
III.3 (d) Example of Hopf Bifurcation	193
III.4 Asymptotic Analysis for Long Waves	196
III.5 Asymptotic Analysis for Short Waves	199
III.6 Liquids with Similar Properties	203
III.6 (a) Close to Criticality for One Fluid	203
III.6 (b) Low Rayleigh Numbers	222
III.6 (c) Summary	235
III.7 Nonlinear Bifurcation Analysis	236
III.7 (a) Problem in Finite Dimension	239
III.7 (b) Reduction to Finite Dimension	245
III.7 (c) Transformation to Birkhoff Normal Form	256
III.7 (d) Results and Discussion	258
Chapter IV. Plane Channel Flows	267
IV.1 Introduction	268
IV.2 Governing Equations for Two-Layer Couette Flow	272
IV.3 Squire's Theorem	276
IV.4 Asymptotic Analysis for Long Waves	279
IV.4 (a) Two-Layer Couette Flow	279
IV.4 (b) Two-Layer Couette-Poiseuille Flow	287
IV.4 (c) Two-Layer Semi-Infinite Couette Flow	290
IV.5 Asymptotic Analysis for Short Waves	296
IV.6 Asymptotic Analyses for:	
IV.6 (a) The Thin-Layer Effect	303
IV.6 (b) High Reynolds Numbers	305
IV.7 Analysis of Stability in the General Case: Energy Equation	320
IV.8 Nonlinear Analysis	324
IV.8 (a) Weakly Nonlinear Amplitude Equations for Long Waves	324
IV.8 (b) Bifurcation Analysis	338
IV.9 Two-Layer Couette Flow of Upper-Convected Maxwell Liquids	359
IV.9 (a) Governing Equations	361
IV.9 (b) Asymptotic Analysis for Short Waves	364
IV.9 (c) Numerical Study of the Spectrum	373
IV.9 (d) Wet Slip and Extrudate Sharkskin Formation	375
IV.10 Liquid-Vapor Films between Heated Walls	378
IV.10 (a) Governing Equations and Interface Conditions for Two-Phase Flow of Vapor and Liquid	379
IV.10 (b) Governing Equations for the Inclined Channel	382

IV.10 (c) Basic Flow	384
IV.10 (d) Equations for Linear Stability Analysis	385
IV.10 (e) Dimensionless Variables and Normal Modes	386
IV.10 (f) Two Different Interfacial Temperature Conditions	390
IV.10 (g) Energy Analysis	390
IV.10 (h) Horizontal Case	392
IV.10 (i) Vertical Case	396
IV.10 (j) Conclusions	398
References	400
Index	429

Contents of Part II: Lubricated Transport, Drops and Miscible Liquids

Chapter V. Introduction to Lubricated Pipelining

V.1 Nature of the Problem
V.2 Chronology of Experiments and Applications
V.3 Effects of Gravity
V.4 Stability Studies
V.5 Plan of Chapters VI - VIII, and List of Acronyms

Chapter VI. Lubricated Pipelining: Linear Stability Analysis

VI.1 Neutral Curves, Waves of Fastest Growth, Comparison with Experiments of CGH
VI.1 (a) Introduction
VI.1 (b) The Equations and Basic Flow
VI.1 (c) Perturbation Equations
VI.1 (d) Dimensionless Equations and Parameters
VI.1 (e) Normal Modes
VI.1 (f) Pseudospectral Numerical Method
VI.1 (g) Axisymmetric and Nonaxisymmetric Disturbances
VI.1 (h) Perturbation Solution for Long Waves
VI.1 (i) Comparison With Results of Hooper and Boyd
VI.1 (j) $m \rightarrow 0$ for $R_1 \neq 0$ is a Singular Limit
VI.1 (k) The Limit $R_1 \rightarrow 0$ and $m \neq 0$
VI.1 (l) Neutral Curves
VI.1 (m) Comparison with Experiments
VI.1 (n) Conclusions
VI.2 Energy Analysis of the Waves of Fastest Growth
VI.2 (a) Introduction
VI.2 (b) The Basic Flow
VI.2 (c) Perturbation Equations and Normal Modes
VI.2 (d) Finite Element Formulation

- VI.2 (e) Energy Analysis
- VI.2 (f) Comparison with Previous Results for Two-Layer Core-Annular Flow
- VI.2 (g) The Viscous Core : $m < 1$
- VI.2 (h) The Viscous Liquid is on the Wall: $m > 1$
- VI.2 (i) Stability of Thin Liquid Threads
- VI.2 (j) Stability of Core-Annular Flow in Three Layers (Hydrophobic Pipe Walls)
- VI.2 (k) Conclusions
- VI.2 (l) Comparison with Field Data: Scale-up, Transition to Water in Oil (w/o) Emulsions
- VI.2 (m) Stability of Rotating Core-Annular Flow
- VI.3 Stability of Core-Annular Flow with a Small Viscosity Ratio
 - VI.3 (a) Formulation of the Problem
 - VI.3 (b) Case I: The Critical Point is Far Away from the Interface
 - VI.3 (c) Case II: The Critical Point is Close to the Interface
 - VI.3 (d) Numerical Results
 - VI.3 (e) Growth Rate and Wave Velocity
 - VI.3 (f) Conclusions

Chapter VII. Core-Annular Flow in Vertical Pipes

- VII.1 Introduction
- VII.2 Basic Flow
- VII.3 Experiments
 - VII.3 (a) Free Fall
 - VII.3 (b) Forced Flows
- VII.4 Disturbance Equations
- VII.5 Numerical Method
- VII.6 Density Stratification and Interfacial Gravity
- VII.7 Long Waves
- VII.8 Neutral Curves: Free Fall Under Gravity
- VII.9 Neutral Curves: Forced Flows
- VII.10 Conclusions on Linear Stability
- VII.11 Notation for Sections VII.12-21
- VII.12 Properties of Fluids Used in Experiments
- VII.13 Experimental Set-Up and Procedures
- VII.14 Hold-up Ratio
- VII.15 Flow Types
- VII.16 Flow Charts
- VII.17 Pressure Drop Measurements
- VII.18 Ideal and Measured Efficiency of Lubrication
- VII.19 Friction Factor and Reynolds Number for Lubricated Pipelining
- VII.20 Comparison of Experiments with Theory
 - VII.20 (a) For Fixed Values of V_o and V_w

VII.20 (b) For Fixed Values of V_o and a

VII.21 Summary and Discussion

Chapter VIII. Nonlinear Stability of Core-Annular Flow

VIII.1 Introduction

VIII.2 Nonlinear Evolution of Axisymmetric Disturbances

VIII.3 Multiple Scales, Wave Packets and Ginzburg-Landau Equations

VIII.4 Numerical Scheme

VIII.5 Nonlinear Stability of Core-Annular Flow

VIII.6 Small Capillary Numbers

VIII.7 Large Capillary Numbers

VIII.8 Experiments

VIII.9 Summary and Discussion of the Application of Ginzburg-Landau Equations to Core-Annular Flow

VIII.10 Nonlinear Amplitude Equations for Long Waves

VIII.11 Amplitude Equation of Hooper and Grimshaw

VIII.12 Rupture of Thin Films

 VIII.12 (a) Long Waves

 VIII.12 (b) Lubrication Theory

VIII.13 Amplitude Equations of Frenkel et al and Papageorgiou et al

VIII.14 Long-Wave Expansions for the Amplitude Equation (13.6)

 When $IR_1 = O(1)$

VIII.15 Exact Stability Results for Long Waves

VIII.16 Comparison of Lubrication Theory with Exact Theory

VIII.17 Discussion

Chapter IX. Vortex Rings of One Fluid in Another in Free Fall

IX.1 Introduction

IX.2 Classical Vortex Rings

IX.3 The Normal Stress Balance

IX.4 Stokes Flow Around a Drop

IX.5 Dimensionless Parameters

IX.6 Physical and Other Properties

IX.7 Distortion of the Spherical Drop

IX.8 Formation of Rings

IX.9 Two-Fluid Systems That Do and Do Not Form Vortex Rings

IX.10 Effect of Drop Size and Surfactant

Chapter X. Miscible Liquids

X.1 Motivation and Problem Statement

X.2 Historical Introduction

X.3 Dynamic and Instantaneous Interfacial Tension

X.4 Mixtures of Incompressible Miscible Liquids and

 Korteweg's Theory

 X.4 (a) Compressible Fluids

- X.4 (b) Mixtures of Incompressible Fluids
- X.4 (c) Diffusion Equation for Mixtures of Miscible Incompressible Fluids
- X.4 (d) Solenoidal Fields for Simple Mixtures
- X.4 (e) Diffusion in Simple Mixtures
- X.4 (f) Korteweg Stresses and the Equations of Motion
- X.5 Motionless Solutions and Steady Solutions
- X.6 Falling Drops, Rising Bubbles and Plumes
- X.7 Isothermal Problems
- X.8 One-Dimensional Mixing Layer Problems
- X.9 Jump of the Normal Stress across a Plane Mixing Layer
- X.10 Spreading of a Spherical Diffusion Front and Korteweg Stresses
- X.11 The Effect of Convection on Diffusion
- X.12 Miscible Displacement in a Hele-Shaw Cell
- X.13 Stability of Steady Miscible Displacement
- X.14 Asymptotic Analysis of Stability
- X.15 Growth Rates and Neutral Curves
- X.16 Structure of Two-Dimensional Problems
- X.17 Conclusions and Discussion

Appendix

References

Index