Leonard Bolc Piotr Borowik

Many-Valued Logics

1 Theoretical Foundations

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

Contents

.1	Set Operations	1
.2	Relations	
.3	Partial Functions and Functions	4
.4	Indexed Families of Sets and Generalized Set Operations	5
.5	Natural Numbers, Countable Sets	5
.6	Equivalence Relations, Congruences	6
.7	Orderings	7
8.1	Trees	9
.9	Inductive Definitions	10
.10	Abstract Algebras	12
1.11	Logical Matrices	20
2	Many-Valued Propositional Calculi	23
2.1	Remarks on History	23
2.2	The Definition of a Propositional Calculus	25
2.3	Many-Valued Calculi of Lukasiewicz	27
2.4	Finitely Valued Calculi of Lukasiewicz	30
2.4.1	The Formalized Language of Propositional Calculi	30
2.5	Algebraic Characterization of the n-valued Calculi of Lukasiewicz.	32
2.5.1	Lattices	32
2.5.2	Quasi-Boolean Algebras and Heyting Algebra	33
2.5.3	Proper Lukasiewicz Algebras	37
2.5.4	The Łukasiewicz Implication	39
2.5.5	Stone Filters in Proper n-valued Lukasiewicz Algebras	41
2.5.6	The Axiom System for the n-valued Propositional	
	Calculus of Lukasiewicz	42
2.6	Many-Valued Calculi of Post	46
2.6.1	Bibliographical Remarks	46
2.6.2	Post Algebras	46
2.6.3	Post Algebra Filters	49
2.6.4	The Axiom System for the n-valued Post Calculus	51
2.6.5	Many-Valued Post Calculi with Several Designated Truth Values .	54
2.6.6	Definability of Functors in the n-valued Post Logic	57

Content

3.1

3.2 3.3

3.4	The Three-Valued Calculus of Hallden 6
3.5	The Three-Valued Calculus of Aqvist 6
3.6	The Three-Valued Calculi of Segerberg
3.7	The Three-Valued Calculus of Piróg-Rzepecka
3.8	The Three-Valued Calculus of Heyting
3.9	The Three-Valued Calculus of Kleene
3.10	The Three-Valued Calculus of Reichenbach
3.11	The Three-Valued Calculus of Slupecki
3.12	The Three-Valued Calculus of Sobociński
4	Some n-valued Propositional Calculi: A Selection 7
4.1	The Many-Valued Calculus of Slupecki
4.2	The Many-Valued Calculus of Sobociński
4.3	The Many-Valued Calculi of Gödel
4.4	The Many-Valued Calculus Cnr
5	Intuitionistic Propositional Calculus 9
5.1	The Intuitionistic Propositional Logic in an Axiomatic Setting 9
5.2	The Natural-Deduction Method for the Intuitionistic
	Propositional Logic
5.3	Characterization of the Intuitionistic Propositional Logic in
	Terms of the Consequence Operator Cn_I
5.4	Algebraic Characterization of the Intuitionistic
	Propositional Logic
5.5	Kripke's Semantics for the Intuitionistic Propositional Calculus 10
6	First-Order Predicate Calculus for Many-Valued Logics 10
6.1	The Language of the First-Order Predicate Calculus 10
6.2	Free Variables and Bound Variables
6.3	The Rule of Substitution for Individual Variables
6.4	Fundamental Semantic Notions
6.5	The Many-Valued First-Order Predicate Calculus of Post 11

Survey of Three-Valued Propositional Calculi

The Three-Valued Calculus of Finn

	Contents	IX
7:	The Method of Finitely Generated Trees in n-valued	
	Logical Calculi	123
7.1	Introductory Remarks	123
7:2	Finitely Generated Trees for n-valued Propositional Calculi	
7.3	The Existence of Models for the Propositional Calculus	
7.4	Finitely Generated Trees for n-valued First-Order	
rt.	Predicate Calculi	133
7.5	Finitely Generated Trees for n-valued Quantifiers	
S f	Fuzzy Propositional Calculi	143
8.1	Introductory Remarks	143
3.2	Fuzzy Sets	
3,3	Syntactic Introduction	
3.4	Semantic Basis for Fuzzy Propositional Logics	
.5	Remarks on the Incompleteness of Fuzzy Propositional Calculi	
8.6	First-Order Predicate Calculus for Fuzzy Logics	
3.6.1	Introductory Remarks	192
3.6.2	Generalized Residual Lattices	192
3.6.3	The Language of the Fuzzy First-Order Predicate Calculus	195
8.6.4	Semantic Consequence Operation	199
8.6. 5	Syntax of the Fuzzy First-Order Predicate Calculus	202
3.6 .6	Syntactic Consequence Operation	203
8.6. 7	An Axiom System for the Fuzzy First-Order Predicate Calculus	204
8.6.8	Fuzzy First-Order Theories	206
<i>9</i>	Approximation Logics	209
9 .1	Introduction	209
9.2	Rough Sets	209
9.3	Rough Logics with a Chain of Indistinguishability Relations	
9,3.1	Basic Concepts	
9.3.2	Approximate Logical Systems	
9.3 .3	Approximation Theories	
.4	Approximation Logics with Partially Ordered Sets	

Approximation Logics of Type T with Many Indiscernibility

9.4.2

9.4.3

221

228

X	Contents			
10	Probability Logics	ļ		
10.1	Introduction	ţ		
10.2	Lukasiewicz' Idea of Logical Probability	ŀ		
10.3	An Algebraic Description of Probability Logic	}		
10.3.1	Syntax	}.		
10.3.2	Semantics	3.		
10.3.3	Constructions	}		
10.3.4	Probabilistic Consequence	}		
10.4	Axiomatic Approach to Probability Logic	Į.		
10.4.1	Syntax	Ļ		
10.4.2	Probability and Probabilistic Consequence	Ļ		
10.4.3	Completeness of Probability Logic			
10.4.4	Applications	5		
10.4.5	Unreasonable Inference)		
Refere	ences 25	5.		
Index of Symbols				

Author Index