

Contents

Part I	High-T_c Superconducting Devices	
Toward a Technology of Electronic Circuits with High- T_c Superconductors		
By A.I. Braginski (With 2 Figures)	3	
Physics of Josephson Junctions Made of High- T_c Superconductors		
By M.Yu. Kupriyanov (With 1 Figure)	19	
Towards Real HTS Tunnel Junctions		
By Y. Okabe	28	
NS Boundaries and the Proximity Effect in Metal – YBCO Junctions		
By J. Yoshida, T. Hashimoto, S. Inoue, M. Sagoi, and K. Mizushima (With 7 Figures)	32	
In-Situ $\text{YBa}_2\text{Cu}_3\text{O}_7/\text{SrTiO}_3/\text{YBa}_2\text{Cu}_3\text{O}_7$		
a-b Plane Josephson Edge Junctions		
By E. Aharoni, G. Koren, E. Polturak, D. Cohen, and E. Iskevitch (With 5 Figures)	41	
Fine Structure in the Tunneling Characteristis of Bi-Sr-Ca-Cu-O:Pb		
By B.A. Aminov, A.A. Bush, L.I. Leonyuk, T.E. Oskina, M.V. Pedyash, D.K. Petrov, Ya.G. Ponomarev, H.T. Rakhimov, K. Sethupathi, and M.V. Sudakova (With 4 Figures)	45	
Suppression of Magnetic Flux Noise in $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ Flux Transformers		
By M.J. Ferrari, F.C. Wellstood, J.J. Kingston, M. Johnson, and J. Clarke (With 4 Figures)	49	
Anomalous Properties of Weak-Link-Containing Superconductors:		
Flicker Noise		
By S.A. Sergeenkov	57	
Exotic Manifestations of Intrinsic High- T_c Interferometer Loops		
By G. Jung, J. Konopka, and B. Solek (With 3 Figures)	61	
Percolation and Josephson Effects in High- T_c Polycrystalline Thin Films		
By Yu.Ya. Divin and V.N. Gubankov (With 4 Figures)	66	

Observation of Magneto-Thermoelectric Effects in High- T_c Superconducting $Tl_2Ba_2CaCu_2O_x$ Single Crystals By G.Yu. Logvenov, A.E. Koshelev, V.A. Larkin, V.V. Ryazanov, and K.Ya. Soifer (With 2 Figures)	71
Enhancement of the Superconducting Transition Temperature of Y-Ba-Cu-O Thin Films by Silver Over-Layer Deposition By S.S. Tinchev and A. Baranyak (With 3 Figures)	75
High-Temperature Ceramic RF-SQUIDS By B.V. Vasiliev (With 8 Figures)	79
A Compact High- T_c RF-SQUID System with Reduced Tank Circuit Damping By Yi Zhang and C. Heiden (With 8 Figures)	87
High- T_c RF-Biased SQUID Magnetometers By V.I. Shnyrkov, G.M. Tsoi, D.A. Konotop, V.P. Timofeev, S.S. Khvostov, and V.V. Shapovalenko (With 4 Figures)	92
Performance of BSCCO Thick Film RF-SQUIDS By N. Khare, S. Chaudhry, A.K. Gupta, and V.S. Tomar (With 5 Figures)	97
Two-Loop Y-Ba-Cu-O RF-SQUID Magnetometer By S.S. Tinchev and J.H. Hinken (With 4 Figures)	102
YBCO/PBCO/YBCO Edge Junctions and DC-SQUIDS By H. Rogalla (With 12 Figures)	106
Reproducible High- T_c SNS Josephson Junctions and DC-SQUIDS By M.S. Dilorio, S. Yoshizumi, K.-Y. Yang, J. Zhang, M. Maung, and N. Fan (With 4 Figures)	120
High- T_c Epitaxial Junctions and DC-SQUIDS By Shiguang Wang, Xianghui Zeng, Yuandong Dai, Yifei Hu, Huaming Jiang, Rangjiao Liu, and Jiazhang Li (With 4 Figures)	127
Multilayer $YBa_2Cu_3O_x$ Structure – An Approach to SQUID Applications By M. Schilling, T. Bade, and U. Merkt (With 2 Figures)	133
DC-SQUID with Step Edge Junctions on (100) $SrTiO_3$ By M. Siegel, F. Schmidl, E. Heinz, K. Zach, J. Fuchs, E.-B. Kley, and P. Seidel (With 5 Figures)	138
$YBa_2Cu_3O_x$ DC-SQUIDS on Y-ZrO ₂ Bicrystals By Z.G. Ivanov, P.A. Nilsson, D. Winkler, G. Brorsson, T. Claeson, E.A. Stepantsov, and A.Ya. Tzalenchuk (With 3 Figures)	142
YBCO Thin Films SQUIDS Fabricated on Bicrystal Substrates By S.I. Krasnosvobotsev, M.Yu. Kuprijanov, A.G. Maresov, V.G. Pirogov, O.V. Snigirev, and I.I. Vengrus (With 2 Figures)	146

Sub-Micron $YBa_2Cu_3O_{7-\delta}$ Grain Boundary Junction DC-SQUIDs By M. Kawasaki, P. Chaudhari, T. Newman, and A. Gupta (With 4 Figures)	150
Thin Film $BiPbSrCaCuO$ DC-SQUIDs Operating at 78 K By H.D. Xu, H.Z. Wang, S.Q. Xue, X.Q. Shi, X.M. Huang, C.B. Yang, and X.N. Cao (With 5 Figures)	155
Thin Film High-Temperature Superconducting Flux Transformers Coupled to SQUIDs By F.C. Wellstood, A.H. Miklich, J.J. Kingston, M.J. Ferrari, J. Clarke, M.S. Colclough, K. Char, and G. Zaharchuk (With 2 Figures)	162
$YBa_2Cu_3O_{7-\delta}$ Thin Film Flux Transformers Made by Wet Etching By W. Eidelloth, B. Oh, R.K. Koch, W.J. Gallagher, and R.P. Robertazzi (With 2 Figures)	168
Progress Towards an Integrated HTS SQUID Magnetometer By K. Char, M.S. Colclough, L.P. Lee, and G. Zaharchuk (With 7 Figures)	172
Light Detection Using High- T_c Microstrip Lines By J.C. Culbertson, H.S. Newman, U. Strom, J.M. Pond, D.B. Chrisey, J.S. Horwitz, and S.A. Wolf (With 3 Figures)	180
The Superconducting Flux Flow Transistor: Models and Applications By J.S. Martens, V.M. Hietala, T.E. Zipperian, D.S. Ginley, and C.P. Tigges (With 5 Figures)	186
Preliminary Studies of HTS Far-Infrared Micro-Bolometers By C. Barholm-Hansen and M.T. Levinsen (With 2 Figures)	192
Current Injected Thick Film HTS Magnetic Sensors By P.J. Gielisse, H. Niculescu, B. Roy, P. Pernambuco-Wise, J.E. Crow, G. Sykora, and R. Wahlers (With 4 Figures)	196

Part II Low- T_c Devices

Comparative Study on Two All-Refractory Josephson Tunnel Junctions: $Nb/AlO_x/Nb$ and $Nb/NbN/MgO/NbN/Nb$ By D.J. Adelerhof, B. David, M.E. Bijlsma, J. Flokstra, and H. Rogalla (With 2 Figures)	203
Preparation and Characteristics of Full-Epitaxial $NbC_xN_{1-x}/MgO/NbC_xN_{1-x}$ Josephson Tunnel Junctions By A. Shoji, S. Kiryu, S. Kashiwaya, S. Kohjiro, S. Kosaka, and M. Koyanagi (With 3 Figures)	208
Lead/Bismuth- and Niobium-Based SIN Tunnel Junctions By T. Lehnert, K.H. Gundlach, and H. Kohlstedt (With 6 Figures)	214

Relation Between Tunnel Junction Quality, Anodization Profiles, and Low-Frequency Noise	218
By H. Kohlstedt, S. Kuriki, T. Lehnert, D. Billon-Pierron, and K.-H. Gundlach (With 2 Figures)	218
Submicron Sized, High Current Density Nb/PbBi Window Tunnel Junctions	224
By J. Edstam and H.K. Olsson (With 3 Figures)	224
Barrier-Properties of All-Niobium Tunnel Junctions	228
By G.M. Daalmans, O. Eibl, and L.Bär (With 1 Figure)	228
Fabrication and Performances of NbZr/Oxide/NbZr Thin Film Josephson Junctions	233
By U. Gambardella, D. Di Gioacchino, S. Frigerio, G. Paternò, and M. Cirillo (With 3 Figures)	233
Some Aspects in the Tunneling Behavior of Photosensitive Junctions	237
By C. Camerlingo, B. Ruggiero, M. Russo, and E. Sarnelli (With 2 Figures)	237
Construction and Performance of Wire-Junction RF-SQUIDs	240
By A.C. Bruno and J.E. Zimmerman (With 4 Figures)	240
Self-Consistent Theory of the Voltage-Current Characteristic and Intrinsic Noise of the Hysteretic RF-SQUID	244
By Ya.S. Greenberg	244
An Analysis of Non-Linear Behaviour in the Radio Frequency SQUID Magnetometer	248
By J.F. Ralph, T.P. Spiller, T.D. Clark, R.J. Prance, H. Prance, A.J. Clippingdale, D.J. Rathbone, and M.E. Brooks (With 2 Figures)	248
Low Noise UHF Thin Film SQUID with Cryogenic HEMT Preamplifier	252
By A. Cavalleri, M. Cerdonio, G. Fontana, G. Jung, R. Macchietto, R. Mezzena, S. Vitale, and J.P. Zendri (With 2 Figures)	252
Design and Fabrication Considerations for Extending Integrated DC-SQUIDs to the Deep Sub-Micron Regime	256
By M.B. Ketchen (With 9 Figures)	256
Nb-AlO _x -Nb SNAP Technology for 125 mm Wafers Developed in Partnership with Silicon Technology	265
By M. Bhushan, M.B. Ketchen, C.-K. Hu, K. Stawiasz, C. Cabral Jr., M. Smyth, E. Baran, and D. Pearson (With 5 Figures)	265
DC-SQUIDs Fabricated with Nb/Al-oxide/Nb Tunnel Junctions	271
By H.C. Kwon, Y.H. Lee, J.M. Kim, and J.C. Park (With 4 Figures)	271
A Compact Very Low Noise DC-SQUID Magnetometer	276
By R. Cantor, T. Ryhänen, and H. Seppä (With 3 Figures)	276

A Low Noise DC-SQUID Based on Nb/Al-AlO _x /Nb Josephson Junctions By L. Grönberg, H. Seppä, R. Cantor, M. Kiviranta, T. Ryhänen, J. Salmi, and I. Suni (With 3 Figures)	281
DC-SQUID with Aluminium Microbridges far from T_c By C. Chapelier, M. El Khatib, P. Perrier, A. Benoit, and D. Mailly (With 7 Figures)	286
Accurate Determination of the Electrical Parameters of Thin Film SQUID Structures and Simulation of DC-SQUIDs with Coupling Coils By H. Uhlmann, H. Töpfer, F. Verwiebe, and J. Uhlig (With 1 Figure) . .	292
RF Properties of a DC-SQUID Coupled to a Multiturn Input Coil By K. Enpuku, T. Tanaka, and K. Yoshida (With 3 Figures)	297
Resonances in All-Niobium DC-SQUIDs By G.M. Daalmans, L. Bär, D. Uhl, F. Bömmel, R. Kress, and L. Warzemann (With 5 Figures)	301
Noise in All-Niobium DC-SQUIDs By G.M. Daalmans, L. Bär, F. Bömmel, D. Uhl, and R. Kress (With 3 Figures)	307
Noise Measurements on DC-SQUIDs with Varied Design By M.R. Condron II, G.M. Gutt, B. Muhlfelder, J.M. Lockhart, J.P. Turneaure, M.E. Huber, M.W. Cromar, and E.K. Houseman (With 4 Figures)	312
Noise Properties of NbN-MgO-NbN SQUIDs By O. Dössel, B. David, D. Grundler, R. Kobs, and K.-M. Lüdeke (With 3 Figures)	317
Noise Studies of Uncoupled DC-SQUIDs By T. Ryhänen, H. Seppä, R. Cantor, D. Drung, H. Koch, and D. Veldhuis (With 3 Figures)	321
The Laser Switch in SQUID Measurements: Fundamental Experiments and Low Frequency Noise Reduction By B. Cabrera (With 7 Figures)	326
A New DC-SQUID System with 2f-Demodulation By H. Furukawa and K. Shirae (With 5 Figures)	337
Relaxation Oscillating SQUIDs Using Nb/AlO _x /Nb Josephson Tunnel Junctions By J. Kawai, G. Uehara, N. Mizutani, Y. Kondo, N. Harada, and H. Kado (With 6 Figures)	341
DC-SQUID Electronics Based on Adaptive Noise Cancellation and a High Open-Loop Gain Controller By H. Seppä (With 3 Figures)	346

Investigation of a Double-Loop DC-SQUID Magnetometer with Additional Positive Feedback By D. Drung (With 4 Figures)	351
Switching Probability and Performance in Single-Chip SQUIDs By N. Fujimaki, K. Gotoh, and S. Hasuo (With 4 Figures)	357
Digital CMOS Circuits Below 100 K By E. Crocoll, H. Matz, M. Reick, and W. Jutzi (With 3 Figures)	362
<hr/>	
Part III Applications	
<hr/>	
Fluxons in Josephson Transmission Lines By N.F. Pedersen (With 4 Figures)	369
Phase Locking in Long Josephson Junctions By R.D. Parmentier	376
Soliton Chains in Annular Josephson Junctions: Experiments By A.V. Ustinov, T. Doderer, B. Mayer, R.P. Huebener, I.V. Vernik, and V.A. Oboznov (With 3 Figures)	385
Coupled Josephson Soliton Oscillators By T. Holst, L.E. Guerrero, N. Grønbech-Jensen, J.A. Blackburn, and J. Bindslev-Hansen (With 3 Figures)	389
A 500 GHz Quasi-Optical Slot Antenna SIS Mixer By J. Zmuidzinas and H.G. LeDuc (With 3 Figures)	395
Numerical and Experimental Results on Josephson Junctions Irradiated by a Biharmonic Drive By D. Andreone, V. Lacquaniti, and S. Maggi (With 2 Figures)	399
Phaselocked States in Josephson Junction Resonator Systems By J. Mygind, H. Dalsgaard-Jensen, and A. Larsen (With 2 Figures)	403
Microwave Properties of Josephson Junctions Strongly Coupled to Microstrip Resonators By A. Morgenstjerne, J. Mygind, H. Dalsgaard-Jensen, and A. Larsen (With 2 Figures)	407
Multiloop Integrated DC-SQUID Low Noise RF Amplifiers By M.A. Tarasov, V.Yu. Belitsky, G.V. Prokopenko, and L.V. Filippenko (With 1 Figure)	411
Subharmonic Pumping and Noise Properites of the Josephson Parametric Amplifier By R. Movshovich, B. Yurke, A.D. Smith, and A.H. Silver (With 2 Figures)	415

Imaging of Self-Resonant and RF-Induced States in Josephson Junctions By T. Doderer, R.H. Huebener, C.A. Krulle, B. Mayer, J. Niemeyer, R. Pöpel, and D. Quenter (With 5 Figures)	419
1 V and 10 V Josephson Voltage Standards By J. Niemeyer (With 7 Figures)	430
Ratio Standard for DC Resistance	
Using a Second Generation of Josephson Junction Arrays By J. Kohlmann, P. Gutmann, K. Löhr, T. Weimann, and J. Niemeyer (With 3 Figures)	442
Superconducting Instrumentation for Precision Measurement and Control By R.V. Duncan	446
Use of a Resistive SQUID for Noise Thermometry By R.J. Soulen, Jr., W.E. Fogle, and J.H. Colwell (With 6 Figures)	451
Analysis of a Josephson Junction Noise Thermometer with a DC-SQUID Preamplifier By H. Seppä (With 1 Figure)	460
Review on Superconducting Tunnel Junctions as Ionizing-Radiation Detectors By M. Kurakado (With 2 Figures)	466
Particle Detection with Superconducting Tunnel Junctions—Modelling the Non-Equilibrium State Generated by Particle Interactions By D.J. Goldie, N.E. Booth, R.J. Gaitskell, and G. Salmon (With 2 Figures)	474
A Calorimetric Particle Detector	
Using a SQUID Monitored Transition Edge Thermometer By D. Dummer (With 3 Figures)	482
Multichannel Instrumentation for Biomagnetism By V. Foglietti (With 3 Figures)	487
Design and Operation of a Biomagnetic Multichannel System By S. Schneider, H. Seifert, H.E. Hoenig, and H. Reichenberger (With 6 Figures)	502
Biomagnetic Multi-Channel System	
Consisting of Several Self-Contained Autonomous Small-Size Units By A. Matlashov, A. Bakharev, Y. Zhuravlev, and V. Slobodchikov (With 4 Figures)	511
A Modular 19-Channel SQUID System for Biomagnetic Measurements By O. Dössel, B. David, M. Fuchs, J. Krüger, W.H. Kullmann, and K.-M. Lüdeke (With 3 Figures)	517

On the SQUID-Modules for the UT Multichannel Neuromagnetometer By H.J.M. ter Brake, J. Flokstra, E.P. Houwman, D. Veldhuis, W. Jaszczuk, R. Stammis, G.K. van Ancum, and H. Rogalla (With 3 Figures)	521
11-Channel Multipurpose Biomagnetic System for Operation in Unshielded Environment By A. Pasquarelli, S. Casciardi, M. Giannini, V. Foglietti, V. Pizzella, G. Torrioli, and G.L. Romani (With 3 Figures)	525
A New Method of Adjusting Bias Currents of Neuromagnetometers By M. Hotta, H. Kado, K. Makie, and K. Okajima (With 8 Figures) . . .	529
Active Shield with SQUID for Biomagnetic Measurement By K. Fujioka, K. Matsumoto, Y. Yamagishi, T. Noda, and Y. Kuraoka (With 3 Figures)	533
Active Magnetic Shielding Support for Biomagnetic Instruments By H. Seifert, A. Wirth, and S. Schneider (With 2 Figures)	537
Performance of an Electronic Gradiometer in Noisy Environments By D. Drung (With 3 Figures)	542
Gradiometer Response Analysis for Current Multipole Sources By W. Haberkorn	547
Analyzing Multichannel Magnetometer Data By C.D. Tesche (With 4 Figures)	551
Measurements on Magnetic Samples with a DC-SQUID Working at mK Temperatures in Magnetic Fields up to 6 mT By M. Bühler, E. Umlauf, D. Drung, and H. Koch (With 2 Figures) . . .	557
A Miniature DC-SQUID Magnetometer with Current Injection Feedback By G.J. Sloggett, L. Wieczorek, K.E. Leslie, R.A. Binks, and A. Bendavid (With 4 Figures)	562
The DC-SQUID Amplifier for the NAUTILUS Gravitational Wave Detector at CERN: Preliminary Measurements By C. Cosmelli, M.G. Castellano, and P. Carelli (With 1 Figure)	567
An Improved System for the Nondestructive Evaluation of Steel By H. Weinstock, R.B. Mignogna, R.S. Schechter, and K.E. Simmonds (With 1 Figure)	572
Improved Techniques for Structural NDT Using SQUIDS By A. Cochran and G.B. Donaldson (With 4 Figures)	576
Application of DC-SQUID Magnetometers for Nondestructive Testing of Multilayer Electronic Cards By Yu.E. Zhuravlev, A.A. Bakharev, A.N. Matlashov, V.Yu. Slobodchikov, I.D. Velt, S.L. Nikulin, and R.V. Kalashnikov (With 2 Figures)	581

Characterization of Normal/Superconducting Interfaces: A Novel Technique By J.H. Claassen, J.E. Evetts, R.E. Somekh, and Z.H. Barker (With 1 Figure)	584
---	-----

Transistor Action in Three-Terminal Structures Having Nb Electrodes on an Insulating SrTiO ₃ Substrate By H. Tamura, A. Yoshida, H. Takauchi, and S. Hasuo (With 3 Figures)	588
--	-----

Part IV Summary and Conclusions

Summary and Conclusions By J. Clarke	595
---	-----

Index of Contributors	601
--	-----