

CONTENTS

PART I. BASIC CONSIDERATIONS AND NOTIONS

1 A State of Stress and Strain	3
1.1 Stress	3
1.2 Strain	8
2 Finite Strains	12
2.1 Finite Strain Tensor in Material and Spatial Descriptions	12
2.2 Deformation Rate Tensor	19
2.3 Stress Measures	24
2.4 Final Remarks	26
3 Temperature	27
3.1 Heat Conduction	27
3.2 Heat Convection	28
3.3 Heat Radiation	29
3.4 Temperature Field in a Heat-Conducting Body	30
3.5 Navier-Stokes Equation	33
4 Thermodynamical Considerations	35
4.1 Thermomechanical Process	35
4.2 Formulation of the Constitutive Law	36

PART II. FUNDAMENTALS OF ELASTICITY AND PLASTICITY THEORY

5 Stress-Strain Curve	45
6 Elasticity	48

7 Plasticity	50
7.1 Idealization of Tension Test	50
7.2 Ideal Plasticity Theories	52
7.2.1 Yield Criteria	52
7.2.2 Hencky–Iljuszyn Deformation Theory	53
7.2.3 Plastic Flow Theory	55
7.2.4 Comparison of Flow Theory and Deformation Theory	56
7.2.5 Ideal Plasticity Theory for Finite Deformations . .	58
8 Work-Hardening Equation	60
8.1 Drucker Postulate	60
8.1.1 Stability of Plastic Material in the Drucker Sense .	60
8.1.2 Associated Plastic Flow	61
8.2 Yield Surfaces for Work-Hardening Materials	63
8.2.1 Experimental Results	63
8.2.2 Isotropic Hardening	65
8.2.3 Kinematic Hardening	66

PART III. SMALL STRAIN THERMO-ELASTO-PLASTICITY

9 Equations for Thermo-Elasto-Plasticity	73
9.1 Isotropic Hardening	73
9.2 Kinematic Hardening	76
9.3 Elasto-Visco-Plasticity	78
10 Finite-Element Solution	80
10.1 Finite-Element Solution of Heat Flow Equations	80
10.1.1 Weighted Residual Method	80
10.1.2 Variational Formulation	82
10.1.3 Time Integration Schemes for Nonlinear Heat Conduction	84
10.1.4 Stability Analysis	88
10.2 Finite-Element Solution of Navier–Stokes Equations	90
10.3 Modelling of the Phase Change Process	92
10.4 Examples of Thermal Problems	94
10.4.1 Heat Flow with Phase Change	94
10.4.2 Navier–Stokes Equations	97
10.5 Finite-Element Solution of Thermo-Elasto-Plastic Problems	100
10.5.1 Variational Formulation	100
10.5.2 Integration	104

10.5.3 Methods of Iterative Accumulation	105
10.5.4 Tangent Stiffness Matrices	106
10.6 Examples of Thermo-Elasto-Plastic Analyses	107
PART IV. CREEP	
11 Theoretical Background to Creep	117
11.1 Creep and Relaxation Tests	117
11.2 Creep at Constant Uniaxial Stress	117
11.2.1 Time Functions	117
11.2.2 Stress Functions	119
11.2.3 Temperature Functions	119
11.2.4 Stress and Time Functions	120
11.3 Creep Theories with Time-Dependent Uniaxial Stress	120
11.3.1 Total Strain Theory	120
11.3.2 Time Hardening Theory	121
11.3.3 Strain Hardening Theory	121
11.3.4 Heredity Theory	123
11.4 Creep Theories in Complex Stress State	124
11.4.1 Creep Theory of Deformational Type	124
11.4.2 Flow Theories and Creep Potential	124
11.4.3 Generalization of Strain Hardening Theory	126
12 Creep Rupture	128
12.1 Experimental Studies	128
12.2 Ductile Rupture Theories	129
12.3 Brittle Rupture Theories	131
12.4 Rupture of Mixed Type	132
13 Constitutive Equations for Thermo-Elasto-Plastic and Creep Analysis	134
14 Finite-Element Formulation	135
14.1 Matrix Equation for Thermo-Elasto-Plastic and Creep Problems	135
14.2 Remarks on Solution Procedures	136
14.3 Examples	139

PART V. FINITE STRAINS

15 Finite Strain Models	151
16 Constitutive Equations	152

16.1	Non-Isothermal Plastic Flow	152
16.2	Multiplicative Decomposition of the Deformation Gradient	155
17	Finite-Element Formulation for Non-Isothermal Plastic Flow	157
17.1	Total Lagrange Formulation	157
17.2	Updated Lagrange and Updated Lagrange-Jaumann Formulations	158
17.3	Updated Lagrange-Hughes Formulation	160
PART VI. COUPLED THERMO-PLASTICITY		
18	Equations of Coupled Thermo-Plasticity	163
18.1	Heat Transfer Equations.	163
18.2	Finite-Element Formulation for the Heat Flow Equation	165
18.3	Internal Dissipation Function.	166
18.4	Stress-Strain Relations in Coupled Thermo-Plasticity	167
18.4.1	Thermo-Elasto-Plastic Model Based on Additive Decomposition of Strain	167
18.4.2	Thermo-Rigid Plastic and Thermo-Rigid Visco-Plastic Models	168
18.4.3	Remarks on Other Models.	169
18.5	Coupled Thermomechanical Algorithm	169
18.6	Examples	170
References and Further Reading		177
Subject Index		185