Vladimir I. Arnol'd

Ordinary Differential Equations

Translated from the Russian by Roger Cooke

With 272 Figures

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

Contents

Chapter 1. Basic Concepts	13
§ 1. Phase Spaces	13
1. Examples of Evolutionary Processes	13
2. Phase Spaces	14
3. The Integral Curves of a Direction Field	16
4. A Differential Equation and its Solutions	17
5. The Evolutionary Equation with a One-dimensional	
Phase Space	19
6. Example: The Equation of Normal Reproduction	21
7. Example: The Explosion Equation	23
8. Example: The Logistic Curve	24
9. Example: Harvest Quotas	25
10. Example: Harvesting with a Relative Quota	26
11. Equations with a Multidimensional Phase Space	27
12. Example: The Differential Equation of a	
Predator-Prey System	28
13. Example: A Free Particle on a Line	31
14. Example: Free Fall	32
15. Example: Small Oscillations	32
16. Example: The Mathematical Pendulum	33
17. Example: The Inverted Pendulum	34
18. Example: Small Oscillations of a Spherical Pendulum	34
§ 2. Vector Fields on the Line	36
1. Existence and Uniqueness of Solutions	36
2. A Counterexample	36
3. Proof of Uniqueness	37
4. Direct Products	39
5. Examples of Direct Products	39
6. Equations with Separable Variables	41
7. An Example: The Lotka-Volterra Model	43
§ 3. Linear Equations	48
1. Homogeneous Linear Equations	48

Contents
2. First-order Homogeneous Linear Equations with Periodic Coefficients
3. Inhomogeneous Linear Equations 4. The Influence Function and δ-shaped Inhomogeneities
5. Inhomogeneous Linear Equations with Periodic Coefficients
§ 4. Phase Flows
1. The Action of a Group on a Set
2. One-parameter Transformation Groups
 One-parameter Diffeomorphism Groups
•
§ 5. The Action of Diffeomorphisms on Vector Fields and Direction Fields
1. The Action of Smooth Mappings on Vectors
2. The Action of Diffeomorphisms on Vector Fields
3. Change of Variables in an Equation
4. The Action of a Diffeomorphism on a Direction Field
5. The Action of a Diffeomorphism on a Phase Flow
§ 6. Symmetries
1. Symmetry Groups
2. Application of a One-parameter Symmetry Group to
Integrate an Equation
3. Homogeneous Equations
4. Quasi-homogeneous Equations
5. Similarity and Dimensional Considerations6. Methods of Integrating Differential Equations
o. Methods of Integrating Differential Equations
Chapter 2. Basic Theorems
§ 7. Rectification Theorems
1. Rectification of a Direction Field
2. Existence and Uniqueness Theorems
3. Theorems on Continuous and Differentiable Dependence of the
Solutions on the Initial Condition
5. Theorems on Continuous and Differentiable Dependence on a
Parameter
6. Extension Theorems
7. Rectification of a Vector Field
§ 8. Applications to Equations of Higher Order than First
1. The Equivalence of an Equation of Order n and a System of n
First-order Equations.
 Existence and Uniqueness Theorems
o. Differentiability and Discussion Theorems

	4. Systems of Equations 5. Remarks on Terminology	10: 11:
§	9. The Phase Curves of an Autonomous System 1. Autonomous Systems 2. Translation over Time 3. Closed Phase Curves	110 111 111 113
§	10. The Derivative in the Direction of a Vector Field and First Integrals 1. The Derivative in the Direction of a Vector 2. The Derivative in the Direction of a Vector Field 3. Properties of the Directional Derivative 4. The Lie Algebra of Vector Fields 5. First Integrals 6. Local First Integrals 7. Time-Dependent First Integrals	12 12 12 12 12 12 12 12
§	11. First-order Linear and Quasi-linear Partial Differential Equations 1. The Homogeneous Linear Equation 2. The Cauchy Problem 3. The Inhomogeneous Linear Equation 4. The Quasi-linear Equation 5. The Characteristics of a Quasi-linear Equation 6. Integration of a Quasi-linear Equation 7. The First-order Nonlinear Partial Differential Equation	12 13 13 13 13 13
§	12. The Conservative System with one Degree of Freedom. 1. Definitions. 2. The Law of Conservation of Energy. 3. The Level Lines of the Energy. 4. The Level Lines of the Energy Near a Singular Point. 5. Extension of the Solutions of Newton's Equation. 6. Noncritical Level Lines of the Energy. 7. Proof of the Theorem of Sect. 6. 8. Critical Level Lines. 9. An Example. 10. Small Perturbations of a Conservative System.	13 13 14 14 14 14 14 14 14 14
C	hapter 3. Linear Systems	15
§	 Linear Problems Example: Linearization Example: One-parameter Groups of Linear Transformations of Rⁿ The Linear Equation 	15 15 15
8	14 The Exponential Function	15

Contents	9
1. The Norm of an Operator	155
2. The Metric Space of Operators	156
3. Proof of Completeness	156
4. Series	157
5. Definition of the Exponential e^A	158
6. An Example	159
7. The Exponential of a Diagonal Operator	160
8. The Exponential of a Nilpotent Operator	160
9. Quasi-polynomials	161
§ 15. Properties of the Exponential	162
1. The Group Property	163
2. The Fundamental Theorem of the Theory of Linear	
Equations with Constant Coefficients	164
3. The General Form of One-parameter Groups of Linear	
Transformations of the Space \mathbb{R}^n	165
4. A Second Definition of the Exponential	165
5. An Example: Euler's Formula for e^z	166
6. Euler's Broken Lines	167
§ 16. The Determinant of an Exponential	169
1. The Determinant of an Operator	169
2. The Trace of an Operator	170
3. The Connection Between the Determinant and the Trace	171
4. The Determinant of the Operator e^A	171
§ 17. Practical Computation of the Matrix of an Exponential -	
The Case when the Eigenvalues are Real and Distinct	173
1. The Diagonalizable Operator	173
2. An Example	174
3. The Discrete Case	175
§ 18. Complexification and Realification	177
1. Realification	177
2. Complexification	177
3. The Complex Conjugate	178
4. The Exponential, Determinant, and Trace of a Complex Operator	179
5. The Derivative of a Curve with Complex Values	180
§ 19. The Linear Equation with a Complex Phase Space	181
1. Definitions	181
2. The Fundamental Theorem	181
3. The Diagonalizable Case	182
4. Example: A Linear Equation whose Phase Space is a Complex	102
Line	182
5. Corollary	185
•	
§ 20. The Complexification of a Real Linear Equation	185
1. The Complexified Equation	185

	 The Invariant Subspaces of a Real Operator. The Linear Equation on the Plane. The Classification of Singular Points in the Plane. Example: The Pendulum with Friction. The General Solution of a Linear Equation in the Case when the Characteristic Equation Has Only Simple Roots. 	187 189 190 191
§	 The Classification of Singular Points of Linear Systems. Example: Singular Points in Three-dimensional Space Linear, Differentiable, and Topological Equivalence The Linear Classification The Differentiable Classification	195 195 197 198 199
§	 The Topological Classification of Singular Points Theorem Reduction to the Case m₋ = 0 The Lyapunov Function Construction of the Lyapunov Function An Estimate of the Derivative Construction of the Homeomorphism h Proof of Lemma 3 Proof of the Topological Classification Theorem 	199 199 200 201 202 204 206 207 208
8	23. Stability of Equilibrium Positions 1. Lyapunov Stability 2. Asymptotic Stability 3. A Theorem on Stability in First Approximation 4. Proof of the Theorem	210 210 211 211 212
§	24. The Case of Purely Imaginary Eigenvalues 1. The Topological Classification 2. An Example. 3. The Phase Curves of Eq. (4) on the Torus 4. Corollaries 5. The Multidimensional Case 6. The Uniform Distribution	215 215 215 217 219 219 220
§	 The Case of Multiple Eigenvalues. The Computation of e^At, where A is a Jordan Block. Applications. Applications to Systems of Equations of Order Higher than the First. The Case of a Single nth-order Equation. On Recursive Sequences. Small Oscillations. 	221 221 223 224 225 226 227
§	26. Quasi-polynomials 1. A Linear Function Space 2. The Vector Space of Solutions of a Linear Equation	229 229 230

Contents	11
 Translation-invariance Historical Remark Inhomogeneous Equations The Method of Complex Amplitudes Application to the Calculation of Weakly Nonlinear Oscillations 	$233 \\ 235$
§ 27. Nonautonomous Linear Equations 1. Definition 2. The Existence of Solutions 3. The Vector Space of Solutions 4. The Wronskian Determinant 5. The Case of a Single Equation 6. Liouville's Theorem 7. Sturm's Theorems on the Zeros of Solutions of Second-order Equations	241 242 244 245
§ 28. Linear Equations with Periodic Coefficients 1. The Mapping over a Period. 2. Stability Conditions. 3. Strongly Stable Systems. 4. Computations.	256 256 258 259 262
§ 29. Variation of Constants 1. The Simplest Case 2. The General Case 3. Computations	264 264 264 265
Chapter 4. Proofs of the Main Theorems	267
§ 30. Contraction Mappings 1. Definition 2. The Contraction Mapping Theorem 3. Remark	267 267 268 269
§ 31. Proof of the Theorems on Existence and Continuous	
Dependence on the Initial Conditions 1. The Successive Approximations of Picard 2. Preliminary Estimates 3. The Lipschitz Condition 4. Differentiability and the Lipschitz Condition 5. The Quantities C, L, a', b'	269 269 271 272 272 273
6. The Metric Space M	274 275 276 277
§ 32. The Theorem on Differentiability 1. The Equation of Variations 2. The Differentiability Theorem	279 279 280

 Higher Derivatives with Respect to x Derivatives in x and t The Rectification Theorem The Last Derivative 	281 281 282 285
Chapter 5. Differential Equations on Manifolds	288
§ 33. Differentiable Manifolds 1. Examples of Manifolds 2. Definitions 3. Examples of Atlases 4. Compactness 5. Connectedness and Dimension 6. Differentiable Mappings 7. Remark 8. Submanifolds 9. An Example	288 288 288 291 293 294 296 296 297
§ 34. The Tangent Bundle. Vector Fields on a Manifold. 1. The Tangent Space. 2. The Tangent Bundle. 3. A Remark on Parallelizability. 4. The Tangent Mapping. 5. Vector Fields.	298 298 299 301 302 303
§ 35. The Phase Flow Defined by a Vector Field 1. Theorem 2. Construction of the Diffeomorphisms g ^t for Small t 3. The Construction of g ^t for any t 4. A Remark	304 304 305 306 307
§ 36. The Indices of the Singular Points of a Vector Field 1. The Index of a Curve. 2. Properties of the Index 3. Examples 4. The Index of a Singular Point of a Vector Field 5. The Theorem on the Sum of the Indices 6. The Sum of the Indices of the Singular Points on a Sphere 7. Justification 8. The Multidimensional Case	309 309 310 312 313 315 317 318
Examination Topics	323
Sample Examination Problems	324 326
Subject Index	331