Contents

Some Remarks on the History and Objectives of the Calculus of Variations				
1.	Direct Methods of the Calculus of Variations	15		
1.1	The Fundamental Theorem of the Calculus of Variations	15		
1.2	Applying the Fundamental Theorem in Banach Spaces	20		
1.2.1	Sequentially Lower Semicontinuous Functionals	22		
1.3	Minimising Special Classes of Functions	25		
1.3.1	Quadratic Functionals	28		
1.4	Some Remarks on Linear Optimisation	30		
1.5	Ritz's Approximation Method	31		
2.	Differential Calculus in Banach Spaces	3 5		
2.1	General Remarks	3 5		
2.2	The Fréchet Derivative	36		
2.2.1	Higher Derivatives	43		
2.2.2	Some Properties of Fréchet Derivatives	44		
2.3	The Gâteaux Derivative	46		
2.4	nth Variation	49		
2.5	The Assumptions of the Fundamental Theorem			
	of Variational Calculus	51		
2.6	Convexity of f and Monotonicity of f'	52		
3.	Extrema of Differentiable Functions	54		
3.1	Extrema and Critical Values	54		
3.2	Necessary Conditions for an Extremum	55		
3.3	Sufficient Conditions for an Extremum	60		
4.	Constrained Minimisation Problems (Method of Lagrange Multipliers)	63		
4.1	Geometrical Interpretation	20		
4.0	of Constrained Minimisation Problems	63		
4.2	Ljusternik's Theorems	66		

X	Contents	

4.3	Necessary and Sufficient Conditions	
	for Extrema Subject to Constraints	72
4.4	A Special Case	75
5.	Classical Variational Problems	77
5.1	General Remarks	77
5.2	Hamilton's Principle in Classical Mechanics	80
5.2.1	Systems with One Degree of Freedom	81
5.2.2	Systems with Several Degrees of Freedom	95
5.2.3	An Example from Classical Mechanics	105
5.3	Symmetries and Conservation Laws in Classical Mechanics	107
5.3.1	Hamiltonian Formulation of Classical Mechanics	107
5.3.2	Coordinate Transformations and Integrals of Motion	109
5.4	The Brachystochrone Problem	113
5.5	Systems with Infinitely Many Degrees of Freedom: Field Theory	116
5.5.1	Hamilton's Principle in Local Field Theory	117
5.5.2	Examples of Local Classical Field Theories	122
5.6	Noether's Theorem in Classical Field Theory	124
5.7	The Principle of Symmetric Criticality	130
6.	The Variational Approach to Linear Boundary	
	and Eigenvalue Problems	142
6.1	The Spectral Theorem for Compact Self-Adjoint Operators.	
	Courant's Classical Minimax Principle. Projection Theorem .	142
6.2	Differential Operators and Forms	148
6.3	The Theorem of Lax-Milgram and Some Generalisations	152
6.4	The Spectrum of Elliptic Differential Operators in a Bounded	
	Domain. Some Problems from Classical Potential Theory	156
6.5	Variational Solution of Parabolic Differential Equations.	
	The Heat Conduction Equation. The Stokes Equations	159
6.5.1	A General Framework for the Variational Solution	
-	of Parabolic Problems	161
6.5.2	The Heat Conduction Equation	166
6.5.3	The Stokes Equations in Hydrodynamics	167
7.	Nonlinear Elliptic Boundary Value Problems	
	and Monotonic Operators	171
7.1	Forms and Operators – Boundary Value Problems	171
7.2	Surjectivity of Coercive Monotonic Operators.	
	Theorems of Browder and Minty	173
7.3	Nonlinear Elliptic Boundary Value Problems.	
	A Variational Solution	178

XII	Contents
VII	Contents

9.7.5	Growth Restrictions on the Potential	310
9.8	Existence of a Minimiser II: Some Examples	312
9.8.1	Some Non-translation-invariant Cases	313
9.8.2	Spherically Symmetric Cases	316
9.8.3	The Translation-invariant Case Without Spherical Symmetry	319
9.9	Nonlinear Field Equations in Two Dimensions	322
9.9.1	Some Properties of Niemytski Operators on E_q	323
9.9.2	Solution of Some Two-Dimensional Vector Field Equations	326
9.10	Conclusion and Comments	332
9.10.1	Conclusion	332
9.10.2	Generalisations	334
9.10.3	Comments	335
9.11	Complementary Remarks	337
0.11	Comprehensity Remarks	٠٠.
10.	Thomas-Fermi Theory	340
10.1	General Remarks	340
10.2	Some Results from the Theory of L^p Spaces $(1 \le p \le \infty)$	342
10.2	Minimisation of the Thomas-Fermi Energy Functional	344
10.3	Thomas-Fermi Equations and the Minimisation Problem	011
10.4	for the TF Functional	351
10 5	Solution of TF Equations for Potentials	991
10.5	Solution of 14 Equations for Potentials $\sum_{k=1}^{k} z_{i}$	257
	of the Form $V(x) = \sum_{j=1}^{k} \frac{z_j}{ x-x_j } \dots$	357
10.6	Remarks on Recent Developments in Thomas-Fermi	
	and Related Theories	361
Appen	dix A. Banach Spaces	363
Appen	dix B. Continuity and Semicontinuity	371
Appen	dix C. Compactness in Banach Spaces	373
Appen	idix D. The Sobolev Spaces $W^{m,p}(\Omega)$	380
	D.1 Definition and Properties	380
	D.2 Poincaré's Inequality	385
	D.3 Continuous Embeddings of Sobolev Spaces	386
	D.4 Compact Embeddings of Sobolev Spaces	388
Appen	ndix E	391
PP	E.1 Bessel Potentials	391
	E.2 Some Properties of Weakly Differentiable Functions	392
	E.3 Proof of Theorem 9.2.3	393
	ences	395
Index	of Names	405
Subjec	et Index	407