Contents

Introduction		
Chap	oter 1 Optical-Physical Models of Atmospheric Aerosol	7
1.1	Complex Optical Models of Atmospheric Aerosol	7
1.2	Application of Mie Theory in Determining	
	the Optical Parameters of Atmospheric Aerosol	22
1.3	Closed Modeling of the Optical Characteristics	
	of Atmospheric Aerosol	37
Chap	oter 2 The Radiation-Environment Interaction	43
2.1	Basic Definitions in Photometry	44
2.2	Equations of Interaction Between Radiation	
	and Randomly Inhomogeneous Media	46
2.3	The Filtering Role of the Optical Radiation Sensors	50
2.4	Coherence Functions	55
2.5	The Structure of the Brightness Field and the Structuring	
	of Computation Programs	59
2.6	Partially Coherent Waves Coherence Matrices	61
Char	oter 3 Theoretical Models of the Non-Polarized Optical	
_	Radiation in the Atmosphere-Surface System	69
3.1	Justification of the Necessity to Consider the Distorting Effect	
	of the Atmosphere when Surveying the Earth from Space	69
3.2	Calculating Facilities of the Analytical	
	and Numerical Methods of the Radiation Transfer Theory	74
3.3	Setting the Problem of Theoretical Determination	
	of Scalar Asymptotic Transfer Functions of the Atmosphere	77
3.4	An Accurate Solution for the Problem of Diffused Reflection	
	and Transmission of Light by the Terrestrial Atmosphere	
	for Model Phase Functions	82

VIII Contents

3.5	Algorithm to Determine the Azimuthal Harmonics of ϱ^m and σ^m Brightness Coefficients	90
3.6	Linear Integral Equations for Basic Functions	97
3.7	Application of the Specular Reflection Principle	,
2.,	in the Theory of Radiation Transfer	103
3.8	The Meaning in Probability Terms	103
5.0	of Basic Ω_i^m and θ_i^m Functions	113
3.9	Accurate Expressions for the Azimuthal Harmonics	113
3.7	of Brightness Coefficients ϱ^m and σ^m for an Approximating	
	Three-Term Phase Function (m = 0, 1, 2)	116
3.10	Atmospheric Albedo, Spherical Albedo and Irradiance	110
3.10		122
2 1 1	of the Planetary Surface	123
3.11	Approximate Expressions for the Coefficients	
	of Diffused Reflection and Transmission	405
2.42	with an Arbitrary Phase Function	127
3.12	Determination of the Parameters of the Radiation Field with	
	the Use of an Advanced Method of Spherical Harmonics	131
Chapt	ter 4 A One-Dimensional Scalar Transfer Function	
•	of the Atmosphere	141
4.1	Theoretical Assessment of the Spectral Transfer Function for	
	the Brightnesses of a Horizontally Homogeneous Surface	141
4.2	On the Solution of Inverse Problems of Space-Based	
	Atmospheric Optics for Model Phase Functions	146
4.3	Tabulating Basic Constituents of the Scalar Transfer Function	
	of an Aerosol Atmosphere	151
4.4	The Effect of the Non-Orthotropic Surface	
	on the Radiation Field	155
4.5	Results of Numerical Modeling of the Background Spectral	
	Transfer Functions	161
4.6	Diagrams of an Optimization of the Transforming Effect	
	of the Atmosphere when Surveying the Earth from Space	165
4.7	The Geographical and Seasonal Distribution	
	of the Transfer Function Monochromatic Values	166
4.8	The Effect of Atmospheric Haze on the Colour	
	of Natural Formations	170
4.9	An Assessment of the Polarization Transfer Function	
	of the Atmosphere	171
4.10	The Effect of the Atmosphere on the Spectral Albedo	
	of Natural Formations	179
4.11	The Geographical and Seasonal Change	
	of the Transfer Function for Albedo	183

Contents IX

Chapt	er 5 The Effect of Horizontal Inhomogeneities of the Underlying Surface	
	on the Scalar Transfer Function of the Atmospheric	187
5.1	Setting the Problem of Theoretical Estimation	
<i>5</i> 2	of a 2-Dimensional (2-D) Atmospheric Transfer Function	187
5.2	The Effect of the Atmospheric Optical Parameters and of the Conditions of Survey on a 2-D Transfer Function	189
5.3	The Effect of the Horizontally Inhomogeneous Constituent	
5.4	of the Scattered Radiation	195
J. T	of Photons on the Spectral Transfer Function	199
5.5	An Approximate Assessment of the Transfer Function for	
	a Surface Formed by Two Horizontally Homogeneous Half-Planes	210
5.6	A Comparison of Experimental and Theoretical Estimates	210
<i>-</i> -	of the Spectral Transfer Functions	215
5.7	The Effect of the Atmospheric Radiative Factors on the Detection of the Small-Sized Optical Inhomogeneities	
	of the Terrestrial Surface	219
5.8	The Formation of Reflection Spectra Near the Interface Between Two Horizontally Homogeneous Media	223
	Between two Horizontany Homogeneous wedia	223
Chant	Dedictive Connection of the Space Deviced Leaves	
Chapt	er 6 Radiative Correction of the Space-Derived Images of the Earth Surface	229
. .		
6.1 6.2	Setting the Problem of Atmospheric Radiative Correction The Status of the Problem of Radiative Correction	229
0.2	of Multispectral Space-Derived Images	233
6.3	An Approximation of the Dependences of Outgoing Radiation	255
6.4	Intensities by Orthogonal Polynomials Sensitivity of the Calculation Scheme Considering the	255
	Atmospheric Haze Brightness to Variations in the Initial Data	263
6.5 6.6	Atmospheric Filter for Spatial Frequencies	271
6.7	Retrieving the Spatial Structure of an Ideal Image A Regularized Solution for Inverse Problem	275 281
6.8	Results of Radiative Correction of the Digitized Photographic	
6.9	and Scanner Information	285
0.7	from Satellites and Aircraft	290
6.10	Thematic Interpretation of Air- and Space-Derived Digitized	•••
6.10.1	Video Information	294 295
	Principles of Recognition of Images	298
	Features of the Applied Method for Classification	304

X Contents

6.10.4	Classification of Images Before	
	and After Their Radiative Correction	306
6.11	Atmospheric Correction as One of the Stages	
	of Thematic Interpretation of Video Information	316
6.11.1	A Comparative Analysis of Space Images and Spectra	317
	The Stages of Atmospheric Correction of Video Information .	326
	The Morphological and Structural Analysis of Images	333
	The Technology of Atmospheric Correction	
	of Video Information	340
6.12	An Assessment of the State of Natural Objects	
	from Remote Sensing Data	343
6.12.1	Models of Multifactor Regression	344
	Interactive Classification of Soils and Vegetation	•
•••	from Mid-Resolution Images	350
6.13	The Structure and Principal Elements of the Automated	
0.15	System of Processing Digital Aerospace Video Information	357
	bystem of Processing Digital Perospace Viaco Information	557
Chapt		
	and Longwave Components of the Radiation Budget	261
	with the Atmosphere and the Earth Surface	361
7.1	The Boundary Problems of Shortwave Radiation Transfer	361
7.2	Cross-Sections of Interaction and Phase Functions	363
7.3	The Solution of the Boundary Problem	505
7.5	for Shortwave Radiation	370
7.4	Possibilities of Reducing Computer Time	374
7.5	Consideration of Non-Orthotropicity	٠, ٠
	and Horizontal Inhomogeneity of the Earth-Surface	382
7.6	The Longwave Radiation Transfer	388
7.7	Radiation Fluxes and Heat Flux Divergences	
•••	in Radiation-Balance Models	393
	in radiation Balance Models	575
Chapt	er 8 Observations of the Earth Radiation Budget from Space	397
8.1	The Status of the Broklem of Batricains the Uset	
0.1	The Status of the Problem of Retrieving the Heat	397
0.0	and Radiation Budgets of the Earth's Surface	39/
8.2	Empirical Analysis of the Earth's Radiation Budget	411
0.2	Components	411
8.3	The Variability of the ERB Components	444
0.4	from Satellite Measurements	411
8.4	The Retrieval of the Radiation and Heat Budgets	44-
0.5	of the Earth's Surface	416
8.5	The Interannual Variability of Radiation Budget at the Upper	404
	and Lower Boundaries of the Atmosphere	421

Contents XI

8.6	Cloudiness as a Factor of Interannual Variability	40.
	of the Radiation Budget	426
8.7	Statistical Characteristics of Anomalies of the 2-D Fields	
	of the Radiation Budget of the North Atlantic	430
8.8	Anomalies of the Radiation Budget and the EAZO Problem .	437
8.9	Teleconnections Between the ERB Anomalies	
	in Tropical and Mid-Latitudes	445
8.10	Prospects for Using Satellite Measurements in Climate Studies	453
Conclusion		
Refer	ences	463
Subie	ect Index	475