Table of Contents

Chapter XIV.	Evolution	Problems:	Cauchy	Problems	in	R"
--------------	-----------	-----------	--------	----------	----	----

Intr	oduction	1
§1.	The Ordinary Cauchy Problems in Finite Dimensional Spaces	3
	 Linear Systems with Constant Coefficients Linear Systems with Non Constant Coefficients 	4 6
6.3	-	
g2.	Diffusion Equations	8
	 Setting of Problem	9 10
	3. The Elementary Solution of the Heat Equation	15
	4. Mathematical Properties of the Elementary Solution and the	13
	Semigroup Associated with the Heat Operator	16
§3.	Wave Equations	21
0	1. Model Problem: The Wave Equation in \mathbb{R}^n	21
	2. The Euler-Poisson-Darboux Equation	44
	3. An Application of §2 and 3: Viscoelasticity	48
§4.	The Cauchy Problem for the Schrödinger Equation, Introduction	53
	1. Model Problem 1. The Case of Zero Potential	53
	2. Model Problem 2. The Case of a Harmonic Oscillator	57
§5.	The Cauchy Problem for Evolution Equations Related to Convolution	
	Products	58
	1. Setting of Problem	58
	2. The Method of the Fourier Transform	59
	3. The Dirac Equation for a Free Particle	63
§6.	An Abstract Cauchy Problem. Ovsyannikov's Theorem	66
Rev	iew of Chapter XIV	72
Cha	pter XV. Evolution Problems: The Method of Diagonalisation	
Cila	pres Av. Evolution Fromenis. The Method of Diagonalisation	
Intr	oduction	73
§1.	The Fourier Method or the Method of Diagonalisation	74
	1. The Case of the Space \mathbb{R}^1 $(n = 1)$	74
	2. The Case of Space Dimension $n = 2 \dots \dots \dots$	94

	3. The Case of Arbitrary Dimension n	99 103
§2.	Variations. The Method of Diagonalisation for an Operator Having Continuous Spectrum	104
	 Review of Self-Adjoint Operators in Hilbert Spaces General Formulation of the Problem A Simple Example of the Problem with Continuous Spectrum 	104 104 108
0.3		
§3.	Examples of Application: The Diffusion Equation	112
	for Neutrons	112 118 122
§4.	The Wave Equation: Mathematical Examples and Examples of	
3	Application	126
	1. The Case of Dimension $n = 1, \dots, \dots$	126
	2. The Case of Arbitrary Dimension n	143
	3. Examples of Applications for $n = 1 \dots \dots \dots \dots$	145
	4. Examples of Applications for $n = 2$. Vibrating Membranes	156
	5. Application to Elasticity; the Dynamics of Thin Homogeneous Beams	159
8 5	The Schrödinger Equation	169
g э.	1. The Cauchy Problem for the Schrödinger Equation in a Domain	
	$\Omega =]0,1[\subset \mathbb{R}.$	170
	2. A Harmonic Oscillator	177 183
§6.	Application with an Operator Having a Continuous Spectrum: Example	184
-	view of Chapter XV	186
	pendix. Return to the Problem of Vibrating Strings	186
AP.	pendix. Return to the Problem of Vibrating Strings	100
Ch	apter XVI. Evolution Problems: The Method of the Laplace Transform	
Int	roduction	202
§ 1.	Laplace Transform of Distributions	203
3	1. Study of the Set I_{ℓ} and Definition of the Laplace Transform	204
	2. Properties of the Laplace Transform	210
	3. Characterisation of Laplace Transforms of Distributions of $L_+(\mathbb{R})$.	212
§2.	Laplace Transform of Vector-valued Distributions	21
-	1. Distributions with Vector-valued Values	218
	2. Fourier and Laplace Transforms of Vector-valued Distributions.	222

Table of Contents XI

§3.	Applications to First Order Evolution Problems	225
	1. 'Vector-valued Distribution' Solutions of an Evolution Equation	
	of First Order in t	225
	2. The Method of Transposition	231
	3. Application to First Order Evolution Equations. The Hilbert Space	
	Case. L ² Solutions in Hilbert Space	233
	4. The Case where A is Defined by a Sesquilinear Form $a(u, v)$	243
§4 .	Evolution Problems of Second Order in t	251
	1. Direct Method	251
	2. Use of Symbolic Calculus	257
	Review	261
§5.	Applications	261
	1. Hydrodynamical Problems	261
	2. A Problem of the Kinetics of Neutron Diffusion	265
	3. Problems of Diffusion of an Electromagnetic Wave	267
	4. Problems of Wave Propagation	273
	5. Viscoelastic Problems	280
	6. A Problem Related to the Schrödinger Equation	290
	7. A Problem Related to Causality, Analyticity and Dispersion Relations	292
	8. Remark 10	295
Re	view of Chapter XVI	296
Ch	apter XVII. Evolution Problems: The Method of Semigroups	
CII	upter XVII. Evolution 1 robicins. The Method of Semigroups	
Int	roduction	297
Par	rt A. Study of Semigroups	301
§1.	Definitions and Properties of Semigroups Acting in a Banach Space.	301
	1. Definition of a Semigroup of Class \mathscr{C}^0 (Resp. of a Group)	301
	2. Basic Properties of Semigroups of Class \mathscr{C}^0	307
\$2.	The Infinitesimal Generator of a Semigroup	310
0	1. Examples	310
	2. The Infinitesimal Generator of a Semigroup of Class \mathscr{C}^0	315
83.	The Hille-Yosida Theorem	321
3	1. A Necessary Condition	321
	2. The Hille-Yosida Theorem	323
	3. Examples of Application of the Hille-Yosida Theorem	327
8.4		353
§ 4 .		223
	1. The Characterisation of the Infinitesimal Generator of a Group of Class & 0	252
1		353 356
	2. Unitary Groups of Class \mathscr{C}^0 . Stone's Theorem	330

XII Table of Contents

	 Applications of Stone's Theorem Conservative Operators and Isometric Semigroups in Hilbert Space Review 	357 362 365
§5.	Differentiable Semigroups	365
§6.	Holomorphic Semigroups	367
§7.	Compact Semigroups	388
	1. Definition and Principal Properties	388
	2. Characterisation of Compact Semigroups	389
	3. Examples of Compact Semigroups	39.4
Par	t B. Cauchy Problems and Semigroups	397
§1.	Cauchy Problems	397
§2.	Asymptotic Behaviour of Solutions as $t \to +\infty$. Conservation and	40.0
	Dissipation in Evolution Equations	406
	Semigroups and Diffusion Problems	412
§4.	Groups and Evolution Equations	420
	 Wave Problems Schrödinger Type Problems 	420 424
	3. Weak Asymptotic Behaviour, for $t \to \pm \infty$, of Solutions of	121
	Wave Type of Schrödinger Type Problems	426
	4. The Cauchy Problem for Maxwell's Equations in an Open Set $\Omega \subset \mathbb{R}^3 \ldots \ldots \ldots \ldots \ldots \ldots$	433
§5.	Evolution Operators in Quantum Physics. The Liouville-von Neumann	
Ü	Equation	439
	 Existence and Uniqueness of the Solution of the Cauchy Problem for the Liouville-von Neumann Equation in the Space of Trace Operators The Evolution Equation of (Bounded) Observables in the Heisenberg 	439
	Representation	446 451
6.6	3. Spectrum and Resolvent of the Operator h	453
§6.	1. Convergence of Semigroups	453
	2. General Representation Theorem	459
Sur	mmary of Chapter XVII	465
Ch	apter XVIII. Evolution Problems: Variational Methods	
Int	roduction. Orientation	467
§1.	Some Elements of Functional Analysis	469
	1. Review of Vector-valued Distributions	469
	2. The Space $W(a, b; V, V')$	472

§ 2.	 The Spaces W(a, b; X, Y). Extension to Banach Space Framework. An Intermediate Derivatives Theorem Bidual. Reflexivity. Weak Convergence and Weak * Convergence Galerkin Approximation of a Hilbert Space 	479 482 493 499 503
	1. Definition	504 504 507
§3.	Evolution Problems of First Order in t	509 509 512 513 520 521
§4.	 Problems of First Order in t (Examples). Mathematical Example 1. Dirichlet Boundary Conditions. Mathematical Example 2. Neumann Boundary Conditions. Mathematical Example 3. Mixed Dirichlet-Neumann Boundary Conditions. Mathematical Example 4. Bilinear Form Depending on Time t. Evolution, Positivity and 'Maximum' of Solutions of Diffusion Equations in L^p(Ω), 1 ≤ p ≤ ∞. Mathematical Example 5. A Problem of Oblique Derivatives. Example of Application. The Neutron Diffusion Equation. A Stability Result. 	524 524 527 528 533 539 542
§5.	Evolution Problems of Second Order in t	552 558 561 566
§6.	Problems of Second Order in t. Examples	581 582 583 587
§7.	Other Types of Equation	620 643 651

5. The Problem of Coupled Parabolic-Hyperbolic Transmission 66. The Method of 'Extension with Respect to a Parameter' 6	70 76
Review of Chapter XVIII	
Bibliography	80
Table of Notations	86
Index	02
Contents of Volumes 1–4, 6	05