

Contents

1	Introduction — 1
1.1	Rise and Development of Green Chemistry — 1
1.1.1	The Crisis of the Ecological Environment Calling for Green Chemistry — 1
1.1.2	Promotion of Green Chemistry by Propagation of Environment Protection and Regulations — 2
1.1.3	The Development of Chemical Industry Declaring Green Chemistry — 3
1.1.4	Sustainable Development Promoting the Green Chemistry — 3
1.1.5	Green Chemistry and Technology is Becoming the Hotspot of Various Governments and Academia — 6
1.2	The Contents and Characteristics of Green Chemistry — 7
1.2.1	The Meaning of Green Chemistry — 7
1.2.2	Research Contents of Green Chemistry — 9
1.2.3	The Characteristics of Green Chemistry — 9
1.3	The Developments of Green Chemistry in Domestic and at Abroad — 10
1.3.1	The Developments of Green Chemistry at Abroad — 10
1.3.2	Green Chemistry Research Receiving Much Attention in China — 19
1.4	Green Chemistry is the Only Way for the Sustainable Development of Chemical Industry in China — 20
1.4.1	Industrial Revolution Originated from Green Chemistry — 20
1.4.2	Green Chemistry is the Preferential Mode for the Sustainable Development of Chinese Chemical Industry — 24
1.4.3	Corresponding Solutions — 25
	Questions — 29
	References — 29
2	Basic principles of green chemistry — 31
2.1	Waste Prevention Instead of Remediation — 32
2.2	Atom Economy — 33
2.3	Less Hazardous Chemical Synthesis — 34
2.4	Designing Safer Chemicals — 35
2.5	Safer Solvents and Auxiliaries — 35
2.6	Design for Energy Efficiency — 36
2.7	Use of Renewable Feedstocks — 37
2.8	Reduce Derivatives — 37
2.9	Catalysis — 38
2.10	Design for Degradation — 39

2.11	Real-time Analysis for Pollution Prevention — 39
2.12	Inherently Safer Chemistry for Accident Prevention — 40
	References — 40
3	Green technologies in inorganic synthesis — 41
3.1	Hydrothermal Synthesis — 41
3.1.1	Introduction — 41
3.1.2	Principle — 41
3.1.3	Application Examples of Hydrothermal Synthesis — 41
3.2	Sol-gel Method — 43
3.2.1	Introduction — 43
3.2.2	Principle — 43
3.2.3	Application of Sol-gel Method — 44
3.3	Local Chemical Reaction Method — 44
3.3.1	Dehydration — 45
3.3.2	Intercalation — 45
3.3.3	Ion Exchange Reaction — 46
3.3.4	Isomorphous Substitution — 47
3.3.5	Decomposition — 47
3.3.6	Redox Reaction — 47
3.4	Low-temperature Solid-phase Reaction — 48
3.4.1	Introduction — 48
3.4.2	Mechanism of Solid-phase Reaction — 48
3.4.3	Applications of Low-temperature Solid-phase Reaction — 50
3.5	Rheological Phase Reaction — 51
3.5.1	Introduction — 51
3.5.2	The Principle of Rheological Phase Reaction — 52
3.5.3	Applications of Rheological Phase Reaction — 52
3.6	The Precursor Method — 53
3.6.1	Summary — 53
3.6.2	Application of Precursor Method — 53
3.7	Melting Method — 54
3.8	Chemical Vapor Deposition — 54
3.8.1	Introduction — 54
3.8.2	The Principle of CVD — 55
3.8.3	The Application of CVD Method — 56
3.9	Polymer Template Method — 56
3.9.1	Introduction — 56
3.9.2	Applications of the Template Method — 57
	Questions — 58
	References — 58

4	Green organic synthesis — 60
4.1	Efficient Chemical Catalytic Organic Synthesis — 60
4.1.1	Organic Synthesis with Solid Acid Catalysts — 60
4.1.2	Solid Base-catalyzed Organic Synthesis — 79
4.1.3	Ionic Liquid Catalyst — 83
4.2	Biocatalysis in Organic Synthesis — 87
4.2.1	Introduction — 87
4.2.2	Basic Principle of Enzyme Catalysis — 89
4.2.3	Types of Biocatalysts — 92
4.2.4	Typical Process of Biocatalysts Utilization — 93
4.3	Asymmetric Catalytic Synthesis — 94
4.3.1	Overview — 94
4.3.2	Principle and Process Analysis of Asymmetric Catalytic Synthesis — 95
4.3.3	Catalyst Systems in Asymmetric Catalytic Reactions — 98
4.4	Organic Synthesis in Fluorine Biphase System — 101
4.4.1	Working Principle of Fluorine Two-Phase System — 101
4.4.2	Applications of Fluorine Two-Phase System — 101
4.5	Organic Synthesis by Phase Transfer Catalysis — 102
4.5.1	Overview — 102
4.5.2	Principle of PTC — 103
4.5.3	Applications of PTC — 103
4.6	Combinatorial Chemistry Synthesis — 104
4.6.1	Overview — 104
4.6.2	Principles of Combination of Chemical Synthesis — 105
4.6.3	Applications of Combinatorial Chemical Synthesis — 106
	Questions — 107
	References — 108
5	Green synthesis chemistry for polymer materials — 110
5.1	Introduction — 110
5.2	Polymerization Technology Employing Water as Reaction Medium — 111
5.2.1	The Advantages and Disadvantages — 111
5.2.2	Compositions of Aqueous Polymerization System and Their Function — 113
5.2.3	Principle of Aqueous Polymerization — 116
5.2.4	Application of Green Polymer Latex — 120
5.3	Polymerization Technology in Ionic Liquids — 121
5.3.1	Radical Polymerization — 122
5.3.2	Ionic Polymerization — 124
5.3.3	Polycondensation and Addition Polymerization — 125
5.3.4	Coordination Polymerization — 126
5.3.5	Electrochemical Polymerization — 126

5.4	Polymerization Technology in SCFs — 127
5.4.1	Polymerization in Supercritical Carbon Dioxide — 127
5.4.2	Depolymerization of Polymer in Supercritical Water — 128
5.4.3	Supercritical Enzyme Catalytic Reaction — 129
5.5	Synthesis of Waterborne Polyurethane with Low Residual VOC — 130
5.5.1	Classifications of Waterborne Polyurethanes — 131
5.5.2	Raw Materials of Waterborne Polyurethane — 133
5.5.3	Preparation of Waterborne Polyurethane Resin — 134
5.5.4	Preparation of Anionic Waterborne Polyurethane Resin — 135
5.5.5	Preparation of Cationic Waterborne Polyurethane Resin — 137
5.5.6	Performance of Waterborne Polyurethane — 137
5.5.7	Applications of Waterborne Polyurethane — 137
5.6	Radiation Cross-linking Polymerization Technology — 139
5.6.1	The Basic Principles of Radiation Cross-linking and Pyrolysis — 140
5.6.2	The Main Features of Radiation Polymerization — 142
5.6.3	Effect of Radiation Cross-linking on the Properties of Polymer — 143
5.6.4	Industrial Application of Radiation Cross-linking Technology — 144
5.7	Plasma Polymerization Technology — 144
5.7.1	Types and Characteristics of Plasma — 145
5.7.2	Mechanism of Plasma Polymerization — 146
5.8	Enzyme-catalyzed Polymerization — 147
5.8.1	Enzyme-catalyzed Ring-opening Polymerization — 147
5.8.2	Enzyme-catalyzed Stepwise Polymerization — 150
	Questions — 152
	References — 152
6	Green technology in fine chemical industry — 155
6.1	Greenization of Pharmaceutical Industry — 155
6.1.1	Introduction — 155
6.1.2	Green Chemical Pharmacy — 156
6.1.3	Green Biopharmaceutical — 161
6.1.4	Green Natural Medicine — 165
6.2	Greenization of Pesticide Industry — 169
6.2.1	Introduction — 169
6.2.2	Green Biological Pesticides — 170
6.2.3	Green Chemical Pesticides — 179
6.2.4	Green Pesticide Preparations — 182
6.3	Green Functional Materials — 184
6.3.1	Polyaniline Materials — 184
6.3.2	Graphene — 185
6.4	Green Electronic Chemicals — 188
6.4.1	Photoresist — 188

6.4.2	Polyimide Materials — 189
6.4.3	Epoxy Molding Compound — 190
6.4.3	Green Battery Materials — 191
	Questions — 198
	References — 199
7	Green technologies for intermediate product synthesis — 202
7.1	Introduction — 202
7.2	Green Technologies in Intermediate Product Synthesis — 202
7.2.1	Application of PDO — 202
7.3	Green Technologies in Typical Product Synthesis — 212
7.4	Green Chemical Process — 217
	Questions — 218
	References — 218
8	Green processes for carbon dioxide resource utilization — 220
8.1	Overview of Global Carbon Dioxide Emissions — 220
8.1.1	The Source of Carbon Dioxide — 220
8.1.2	The Present Situation and the Trend of Global Carbon Dioxide Emissions — 220
8.2	The Separation and Fixing of CO ₂ — 221
8.2.1	The Properties of Carbon Dioxide — 221
8.2.2	Separation Technologies of CO ₂ — 221
8.3	Chemical Conversion Principles of Carbon Dioxide — 225
8.3.1	The Structure of Carbon Dioxide — 225
8.3.2	CO ₂ Activation Methods — 225
8.4	Utilization Examples of Carbon Dioxide Resources — 227
8.4.1	Application of Carbon Dioxide in Inorganic Synthesis — 228
8.4.2	Applications of Carbon Dioxide in Organic Synthesis — 232
	Questions — 235
	References — 235
9	Green chemistry and chemical processes for biomass utilization — 237
9.1	Introduction — 237
9.1.1	Natural Conditions of Biomass — 237
9.1.2	Biomass Concept — 237
9.1.3	Classification of Biomass — 237
9.1.4	Use of Biomass — 238
9.1.5	Biomass Distribution — 239
9.1.6	Comprehensive Utilization of Biomass — 240
9.2	Properties and Analysis Methods of Main Components in Biomass — 243

9.2.1	Physical and Chemical Properties of Cellulose — 243
9.2.2	Physical and Chemical Properties of Hemicellulose — 248
9.2.3	Physical and Chemical Properties of Lignin — 250
9.2.4	Biomass Solvent System and Law — 253
9.2.5	Biomass Structure Analysis Method — 255
9.2.6	Biomass Composition Analysis Method — 261
9.3	Chemical Conversion Principle of the Key Components of Biomass — 263
9.3.1	Chemical Conversion of Cellulose Components — 263
9.3.2	Chemical Conversion of Hemicellulose Components — 265
9.3.3	Chemical Conversion of Lignocellulosic Components — 267
9.4	Principle and Technology of Clean Separation of Biomass Components — 269
9.4.1	Basic Principles of Separation of Components — 269
9.4.2	Component Separation Based on Steam Explosion — 270
9.4.3	Component Separation Process Based on Alkali Peroxide System — 272
9.5	Green Process for Chemical Utilization of Biomass — 273
9.5.1	Ethanol Produced from Biomass — 274
9.5.2	Butanol and Acetone Production from Biomass — 275
9.5.3	Polyols Production from Biomass — 276
9.5.4	Levulinic Acid Produced from Biomass — 277
9.5.5	Adipic Acid Production from Biomass — 278
9.5.6	Hydrogen Produced from Biomass — 279
9.6	Green Chemical Conversion of Natural Oils and Fats — 282
9.6.1	Profile — 282
9.6.2	The Principle of Natural Fatty Acids and of Chemical Conversion — 283
9.6.3	Typical Products and Processes of Green Conversion of Natural Fatty Acids — 286
	Questions — 289
	References — 289
10	Green chemistry in exploiting marine resources — 293
10.1	The Reserves and Application of Marine Resources — 293
10.1.1	Marine Resources — 293
10.1.2	The Application of the Marine Resources — 295
10.2	Extraction and Preparation of Food Additives from Marine Resources — 297
10.2.1	Algal Polysaccharide — 297
10.2.2	Cod Liver Oil — 302
10.3	Extraction and Synthesis of Drugs from Marine Resources — 305
10.3.1	Extraction and Degradation of Chitin/Chitosan — 305

10.3.2	Total Synthesis of Marine Drugs — 310
10.3.3	Extraction of Active Substances from Microbial Secondary Metabolites — 311
10.4	Extraction Rare Elements from Ocean — 313
10.4.1	Potassium (K) — 314
10.4.2	Extraction of Bromine — 315
10.4.3	Extraction of Lithium — 317
10.4.4	Extraction of Uranium — 320
10.5	Desalination — 322
	Questions — 327
	References — 327
11	The greening of the energy industry — 330
11.1	Clean Utilization Technology of fossil fuel — 330
11.1.1	Impact of Energy Consumption on the Environment — 330
11.1.2	Clean Combustion and Efficient Utilization Technology of Coal — 331
11.2	Research and Development of Biomass Energy — 343
11.2.1	Utilization Status of Biomass Energy at Home and Abroad — 344
11.2.2	Biomass Energy Utilization Technology — 346
11.2.3	Biodiesel — 351
11.3	Development and Utilization of Clean Energy — 358
11.3.1	Solar Energy — 358
11.3.2	Wind Energy — 362
11.3.3	Geothermal Energy — 363
11.3.4	Ocean Energy — 365
11.4	Renewable Energy and Sustainable Development — 370
11.4.1	Renewable Energy — 370
11.4.2	Research of Sustainable Energy Strategy — 371
	Questions — 375
	References — 375
12	Circular economy and eco-industrial parks — 377
12.1	The Theoretical Basis of Eco-industry — 377
12.1.1	Concept and Connotation of Eco-industry — 377
12.1.2	Dual Nature of Traditional Industry — 377
12.1.3	Industrial Eco-economic System — 378
12.1.4	Theoretical Basis of Eco-industry — 379
12.2	Circular Economy — 380
12.2.1	Background of Circular Economy — 380
12.2.2	Basic Principles of Circular Economy — 384
12.2.3	Typical Examples of Circular Economy — 386
12.2.4	Implementing Measures for Circular Economy — 391

12.3	Eco-industrial parks — 394
12.3.1	Development at Home and Abroad — 395
12.3.2	Principles and Contents of Eco-industrial Park Planning — 396
12.3.3	Construction of Eco-industrial parks — 400
12.3.4	Examples of Eco-industrial parks — 402
	Questions — 412
	References — 413
13	Intensification technology and practice in chemical processes — 415
13.1	Overview — 415
13.1.1	The Concept of Chemical Process Intensification — 415
13.1.2	Origin and Development of Chemical Process Intensification — 417
13.2	The Coupling Technology of Reaction Process — 418
13.2.1	Membrane Catalytic Reaction — 419
13.2.2	Catalytic Distillation/Suspension Catalytic Distillation — 425
13.2.3	Suspension Catalytic Distillation Technology — 427
13.2.3	Alternating Flow Reaction — 431
13.2.4	Stable Magnetic Field Fluidized Bed — 433
13.3	The Coupling Technology of Separation Process — 435
13.3.1	Reaction Separation Coupling — 436
13.3.2	The Coupling of Membrane Separation — 436
13.3.3	Adsorptive Distillation — 438
13.4	Microchemical Technology — 439
13.4.1	Introduction — 440
13.4.2	The Principle of Microreactor — 440
13.4.3	The Application and Prospect of Microchemical Technology — 443
13.5	Intensification Technology Based on Energy Field — 445
13.5.1	Microwave Technology — 445
13.5.2	Ultrasonic Technology — 450
13.5.3	Radiation Technology — 454
13.5.4	Plasma Technology — 457
13.6	Other Intensification Techniques — 459
13.6.1	Hydrodynamic Cavitation Technology — 459
13.6.2	Supercritical Fluid Technology — 463
13.6.3	Pulse Combustion Drying Technology — 465
13.6.4	Supergravity Intensification Technology — 468
13.6.5	Mechanochemical Process — 470
13.7	Chemical Process Intensification Equipment — 473
13.7.1	Static Mixing Reactor — 474
13.7.2	Monolithic Reactor — 476
13.7.3	Rotating Disk Reactor — 478
13.7.4	Oscillating Flow Reactor — 480

13.7.5	Impinging Stream Reactor — 481
13.7.6	Supergravity Reactor — 484
	Questions — 485
	References — 486
14	Green chemistry assessment and practice — 491
14.1	Basic Principles of Green Chemistry Assessment — 491
14.1.1	Twelve Well-known Principles of Green Chemistry — 491
14.1.2	Twelve Additional Principles of Green Chemistry — 491
14.1.3	Twelve Principles of Green Chemical Engineering — 492
14.2	Life Cycle Assessment — 493
14.2.1	Meaning of Life Cycle Assessment — 493
14.2.2	Steps of LCA — 494
14.2.3	Purposes of LCA — 495
14.3	Assessment of Green Chemistry and Chemical Process — 496
14.3.1	Greenization of Chemical Reaction Process — 496
14.3.2	Measures of Greenization Chemistry and Chemical Process — 498
14.3.3	Assessment of Green Chemistry and Chemical Process — 502
14.4	Building Green Chemical Industry and Promoting Green Development — 509
	Questions — 510
	References — 510
Index	— 513