Contents

Preface — VII

List of symbols and abbreviations — XVII

1	Time series —— 1
1.1	Examples of time series —— 1
1.2	Stochastic processes — 4
1.3	Weak and strict stationarity —— 9
1.4	Existence of Brownian motion and the Poisson process —— 14
1.5	Exercises —— 21
2	Hilbert spaces 22
2.1	Inner-product spaces and their properties —— 22
2.2	Hilbert spaces —— 25
2.3	The Projection Theorem —— 28
2.4	Orthonormal sets —— 32
2.5	Mean-square convergence, conditional expectation and best linear
	prediction in \mathcal{S} —— 34
2.6	Best linear estimation of random vectors in S — 37
2.7	Hilbert space isomorphisms —— 39
2.8	Fourier transforms — 40
2.8.1	The Fourier transform of an L^1 function —— 41
2.8.2	The Fourier transform of an L^2 function — 45
2.9	Exercises —— 49
3	Second-order stochastic processes —— 52
3.1	The mean and autocovariance functions —— 52
3.2	Mean-square continuity —— 54
3.3	Mean-square differentiability —— 56
3.4	Mean-square Riemann integrability —— 59
3.5	Mean-square and pathwise properties —— 61
3.6	Exercises —— 61
4	Orthogonal increment processes —— 63
4.1	Preliminaries —— 63
4.2	Definition and elementary properties —— 63
4.3	Integration with respect to an OIP —— 66
4.4	OIP processes with densities —— 71
4.5	The Fourier transform of an OIP process —— 75
4.6	Exercises — 77

5	Spectral theory of MSC stationary processes —— 78
5.1	Spectral representation of the autocovariance function —— 78
5.2	The spectral representation of a stationary process —— 82
5.3	Inversion formulae —— 90
5.4	Linear transformations of MSC stationary processes —— 93
5.5	Exercises —— 95
6	Mean-square linear prediction of weakly stationary processes —— 97
5.1	The discrete-time case —— 97
5.2	The continuous-time case —— 105
5.3	Exercises —— 127
7	Second-order CARMA processes —— 130
7.1	Definition and properties —— 130
7.2	The Wold–Karhunen representation —— 134
7.3	Prediction —— 144
7.4	R-programs to compute the kernel and autocovariance function —— 154
7.5	Exercises —— 157
3	Infinitely divisible distributions —— 158
3.1	Infinite divisibility in Lévy processes —— 158
3.2	First examples and elementary properties of infinitely divisible
	distributions —— 160
3.3	The distinguished logarithm and n^{th} root —— 164
3.4	Exercises —— 172
9	The Lévy–Khintchine formula for infinitely divisible distributions —— 173
9.1	The Lévy–Khintchine formula —— 173
9.2	Linear transformations and independence of infinitely divisible
	distributions —— 192
9.3	Convergence of infinitely divisible distributions —— 196
9.4	Exercises —— 201
10	Lévy processes —— 203
10.1	Definition, elementary properties and examples —— 203
10.2	Lévy processes in law and infinitely divisible distributions —— 214
10.3	Existence of Lévy processes —— 220
10.4	Exercises —— 228
11	Distributional properties of Lévy processes and the strong law of large numbers —— 229
11.1	The Markov property and time reversal of Lévy processes —— 229

11.2	Moments of Lévy processes and infinitely divisible distributions —— 230
11.3	Strong law of large numbers and a further growth condition for Lévy
	processes —— 244
11.4	Exercises —— 246
12	Lévy processes as random elements and their jump structure —— 248
12.1	Lévy processes as random elements in the space of càdlàg functions —— 248
12.2	Characterizations of the Poisson process and of Brownian motion —— 259
12.3	The jump structure of Lévy processes —— 265
12.4	Exercises —— 285
13	The Lévy–Itô decomposition of Lévy processes and consequences —— 287
13.1	The Lévy–Itô decomposition of a Lévy process —— 287
13.2	Lévy processes of finite variation —— 297
13.3	Subordinators — 304
13.4	Exercises —— 312
14	Examples of Lévy processes —— 314
14.1	Stable distributions and stable Lévy processes —— 314
14.2	The gamma process —— 328
14.3	Processes obtained by subordination —— 330
14.4	The inverse Gaussian and related Lévy processes 338
14.5	Exercises —— 343
15	Integration of deterministic functions with respect to Lévy
	processes —— 346
15.1	Lebesgue–Stieltjes integral with respect to Lévy processes of finite
	variation —— 346
15.2	Integration with respect to one-dimensional Lévy processes —— 354
15.3	The integral for matrix-valued integrands and \mathbb{R}^d -valued Lévy
	processes —— 364
15.4	Exercises —— 368
16	The distribution of the integral and consequences —— 369
16.1	The characteristic function of the integral —— 369
16.2	Distributional properties of the integral —— 379
16.3	Continuous-time moving average processes —— 386
16.4	Improper integrals —— 388
16.5	Exercises —— 390
17	Ornstein-Uhlenbeck processes —— 391
17.1	Solution of the Ornstein–Uhlenbeck equation —— 391

XVI — Contents

Bibliography —— 485

Index ---- 489

17.2	Stationary Ornstein–Uhlenbeck processes —— 395
17.3	Markov-stable Ornstein–Uhlenbeck processes —— 405
17.4	Exercises —— 408
18	Lévy-driven CARMA processes: definition, existence, uniqueness and
	properties —— 410
18.1	Introduction —— 410
18.2	Definition and existence —— 411
18.3	Uniqueness and the Δ-sampled sequence —— 419
18.4	Second-order properties when $\mathbb{E} L_1 ^2 < \infty$ —— 425
18.5	Causality —— 429
18.6	The canonical state vector —— 432
18.7	The Δ -sampled sequence Y^{Δ} , when $\mathbb{E} L_1 ^2 < \infty$ —— 435
18.8	Exercises —— 441
19	QML estimation for CARMA processes —— 443
19.1	QML estimation for CARMA processes based on observations at fixed times
	t_1,\ldots,t_n — 443
19.2	QML estimation for regularly sampled CARMA processes —— 448
19.3	The embedding problem —— 449
19.4	Examples, stochastic volatility —— 458
19.5	Simulation of causal CARMA processes —— 466
19.6	Asymptotic distribution of QML estimators for a CARMA $(p, p - 1)$
	process — 469
19.7	Estimating the Lévy increments —— 474
19.8	Exercises —— 477
A	Appendix: R Programs for generation of Lévy increments —— 479