Contents

Emmanuel Gillain

Acknowledgment ---- V

List of chapter authors — XV

1	Preface and introduction —— 1
1.1	Fast progress in artificial intelligence (AI) —— 1
1.2	Convergence of factors — 5
1.2.1	The globalization and democratization of access to computing and A resources —— 6
1.2.2	Dematerialization, digitization, and exponential growth of data —— 7
1.2.3	AI accelerators: AI techniques that speed up the adoption by the industry —— 8
1.2.4	The dynamics of software, amplified by open-source: reuse, iterative improvement and innovation —— 9

Opportunities and challenges for the industry — 10

A holistic view of AI techniques, their limitations and

Purpose and target audience of the book: enlighten the business

practitioners —— 15

Emmanuel Gillain

1.3

1.4

2

	complementarities —— 19
2.1	What is artificial intelligence (AI)? —— 19
2.2	Decision by search and how an AI agent can construct a plan of actions —— 21
2.2.1	Overview and key concepts —— 21
2.2.2	Industry applications and examples in the book —— 21
2.2.3	Moving to constraint search —— 22
2.2.4	Constraint satisfaction propagation: applications and examples in the
	book —— 23
2.2.5	Limitations of search-based techniques —— 23
2.3	Represent knowledge and reason with symbolic AI —— 24
2.3.1	Overview and key concepts —— 25
2.3.2	Industry applications and examples in the book —— 27
2.3.3	Limitations of symbolic AI —— 28
2.4	Learning with data-driven AI —— 30
2.4.1	Overview —— 30
2.4.2	Supervised learning key concepts, industry applications and examples in
	the book —— 31
2.4.3	Unsupervised learning – key concepts, industry applications, and
	examples in the book —— 32

2.4.4	Anomaly detection – key concepts, industry applications, and examples in the book —— 34
2.4.5	Reinforcement learning: key concepts, industry applications, and
	examples in the book —— 35
2.4.6	What about deep learning? —— 37
2.4.7	Limitations of data-driven learning —— 41
2.5	Learning in a logic framework —— 42
2.5.1	Overview and key concepts —— 42
2.5.2	Industry applications and examples in the book —— 43
2.5.3	Limitations of inductive logic programming —— 44
2.6	Probabilistic reasoning when there is uncertainty —— 44
2.6.1	Key concepts—uncertain facts and outcomes with probabilistic
	reasoning —— 45
2.6.2	Industry application and examples from the book —— 48
2.6.3	Probabilistic reasoning over time, or sequence to sequence —— 49
2.6.4	Industry applications and examples from the book —— 50
2.6.5	Enrich the abstraction—unify probabilistic models and formal
	logic —— 50
2.6.6	Uncertain states or outcomes in the context of a decision —— 51
2.6.7	Limitations of probabilistic reasoning —— 52
2.7	Interaction with machines in natural language —— 52
2.7.1	Overview of some key concepts — 53
2.7.2	Industry applications and examples in the book —— 58
2.7.3	Limitations of natural language processing —— 59
2.8	The importance of an ethical approach to AI —— 60
Yves De	eville
3	Solve problems by searching, including with constraints, a fundamental
	pillar —— 63
3.1	Why is solving problems by search important within the broader artificial
	intelligence (AI) domain? —— 63
3.2	Search algorithms —— 64
3.2.1	What category of problems do search algorithms solve? —— 64
3.2.2	Solving problems by search without heuristics —— 65
3.2.3	Solving problems by search with heuristics —— 70
3.2.4	What are the limitations of search algorithms? —— 73
3.2.5	Industry example. The fastest route with search and heuristics, using
	Bing Maps Routes API —— 75
3.3	Constraint satisfaction problems —— 80
3.3.1	What category of problems does constraint satisfaction solve? —— 80
3.3.2	Solving optimization problems by local search —— 84
3.3.3	Solving problems by constraint programming —— 88

3.3.4	What are the limitations of constraint satisfaction problems? —— 93
3.3.5	Industry example: containers configuration using CSP at Maersk
	Container Industry A/S —— 94
3.4	SAT solvers —— 97
3.4.1	What category of problems does SAT solvers solve? —— 97
3.4.2	Solving problems with SAT solvers —— 98
3.4.3	What are the limitations of SAT solvers? —— 103
3.4.4	Industry example: containers configuration using SAT, at Maersk
	Container Industry A/S —— 104
Bart Bo	gaerts
4	Reasoning with first-order logic —— 107
4.1	Why is reasoning with first-order logic important within the broader artificial intelligence (AI) domain? —— 107
4.2	What category of problems does reasoning with first-order logic solve? —— 109
4.3	How are those problems solved? —— 111
4.3.1	Representing knowledge in first-order logic —— 112
4.3.2	Reasoning with first-order logic —— 120
4.4	What are the limitations of reasoning with first-order logic —— 126
4.5	Industry examples —— 127
4.5.1	Automated design-driven diagnostics for lithography machines at ASML —— 127
4.5.2	Modeling and verifying simple vehicle controller, such as the Triton
	unmanned aircraft systems of the US Navy: using Imandra system and
	first-order logic —— 136
Isabelle	
5	Knowledge representation and engineering with ontologies —— 149
5.1	Why are knowledge representation and engineering with ontologies
	important within the broader AI domain? —— 149
5.2	What category of problems do knowledge representation and engineering
	with ontologies solve? —— 151
5.3	How are those problems solved? —— 153
5.3.1	ALC description logic formal definition — 154
5.3.2	Queries and reasoning problems —— 158
5.4	What are the limitation of knowledge representation and engineering with
F 4 4	ontologies? —— 165
5.4.1	Expressiveness and complexity of DLs — 165
5.4.2	DLs expressiveness limitations and challenges —— 167
5.4.3	Knowledge engineering —— 168 OWL and the semantic web —— 168
5.4.4	CAAF WIN THE SELLIWING MED —— 100

5.4.5	Knowledge graphs —— 169
5.4.6	Conclusion —— 170
5.5	Industry example: drug development using ontologies and semantic search,
	the ONTOFORCE example —— 171
5.5.1	Context — 171
5.5.2	Data is ubiquitous but siloed —— 171
5.5.3	ONTOFORCE —— 172
5.5.4	Use case introduction: semantics and ontologies in basic research —— 17-
5.5.5	Use case scenario: semantics and linked data at work for knowledge
	discovery in early-stage drug research —— 174
5.5.6	Application of early-drug research knowledge for translational research
	use case —— 176
Aleksa	ndra Pižurica
6	Probabilistic reasoning: When the environment is uncertain —— 181
6.1	Why is probabilistic reasoning important within the broader AI
	domain? —— 181
6.2	What category of problems does probabilistic reasoning solve? —— 183
6.3	How probabilistic reasoning problems are solved? —— 185
6.3.1	Modeling causal problems with Bayesian networks —— 185
6.3.2	Modeling noncausal problems with Markov random fields —— 188
6.3.3	Modeling noncausal problems with conditional random fields —— 193
6.3.4	A unifying representation: factor graphs —— 196
6.3.5	Approximate inference algorithms —— 198
6.3.6	Probabilistic reasoning over time —— 204
6.4	What are the limitations of probabilistic reasoning? —— 209
6.5	Industry examples —— 211
6.5.1	Hunting for anomalous sessions using Markov chain model in Microsoft Sentinel —— 211
6.5.2	Crop forecasting with Bayesian inference for agriculture producers —— 218
6.5.3	Estimating players' skills with XBOX TrueSkill™ —— 224
6.6	Useful reminders of probability theory —— 233
6.6.1	Basic concepts in probability —— 233
6.6.2	Maximum likelihood estimation and Bayesian estimation —— 236
Hendri	k Blockeel
7	Learning from data —— 241
7.1	Why is learning important within the broader AI domain? —— 241
7.2	What category of problems does machine learning solve? —— 243
7.2.1	Learning predictive functions —— 243
7.2.2	Learning descriptive models —— 247

7.3	How are learning problems solved? —— 250
7.3.1	From data to model: an overview —— 250
7.3.2	Data collection and preparation —— 250
7.3.3	Format of the data —— 251
7.3.4	Paradigms for learning —— 256
7.3.5	Instance-based methods —— 258
7.3.6	Decision trees —— 259
7.3.7	Ensembles of decision trees —— 262
7.3.8	If-then-rules —— 265
7.3.9	Statistical model fitting —— 269
7.3.10	Support vector machines —— 273
7.3.11	Neural networks —— 277
7.3.12	Dimensionality reduction —— 287
7.3.13	Matrix factorization and tensor decomposition —— 289
7.3.14	Probabilistic graphical models — 291
7.3.15	Clustering and density estimation —— 297
7.3.16	Automata and hidden Markov models —— 299
7.3.17	Reinforcement learning —— 301
7.3.18	Other aspects of learning —— 306
7.4	Evaluating the results —— 309
7.5	What are the limitations of learning? —— 312
7.6	Industry examples —— 314
7.6.1	Predicting the metallization rate in iron production using ensemble
	methods at ArcelorMittal —— 314
7.6.2	Estimating the value of real estate with supervised regression models, at
	KBC Group —— 319
7.6.3	Fraud detection in insurance claims with unsupervised outlier detection,
	at KBC Group —— 322
7.6.4	Defect detection in textile using CNN, k -means clustering, and
	unsupervised anomaly detection, at Veranneman Technical
	Textiles —— 329
7.6.5	Extracting information from forms using clustering techniques with
	Microsoft Form Recognizer —— 333
7.6.6	Recommending pages in Microsoft News with reinforcement
	learning —— 338
Walter	Daelemans
8	Between language and knowledge —— 343
8.1	Why is natural language processing important within the broader AI
	domain? —— 343
8.1.1	A short history of NLP —— 344
8.2	What category of problems does natural language processing solve? —— 346

10.1

KBC Group —— **431**

8.2.1	NLP tasks —— 348
8.2.2	Speech to text processing —— 348
8.2.3	Image to text processing —— 349
8.2.4	Text to text processing —— 350
8.3	How are natural language processing problems solved? —— 352
8.3.1	Static word embeddings —— 352
8.3.2	Language models —— 354
8.3.3	Transformers —— 357
8.3.4	Contextual word embeddings —— 359
8.3.5	From text to knowledge and back —— 362
8.4	What are the limitations of natural language processing? —— 366
8.5	Industry examples —— 367
8.5.1	Automate question answering using NLP with Microsoft
	QnAMaker —— 368
8.5.2	Extract information from contracts using NLP, the case of Daimler — 376
8.5.3	Analyze legal content for lawyers at AXA's legal protection unit —— 384
8.6	Addendum —— 392
Erik Ma	
9	Some words about ethics. The angles of fairness and transparency —— 395
9.1	The challenges of ethical AI —— 395
9.2	Initial framing of fairness —— 396
9.2.1	Generic definition on bias —— 399
9.2.2	What is the problem to solve? —— 399
9.2.3	How do we mitigate it? —— 404
9.2.4	When do we apply these techniques? —— 406
9.2.5	What are the limitations? —— 407
9.3	Initial framing of Interpretability —— 409
9.3.1	What is the problem to solve? —— 410
9.3.2	How do we mitigate it? —— 411
9.3.3	When do we apply these techniques? —— 414
9.3.4	What are the limitations? —— 416
9.4	Industry examples —— 417
9.4.1	Fair loan adjudication models with Fairlearn at EY —— 417
9.4.2	Detect and reduce fraud for loyalty services using InterpretML to respect
	ethical AI principles —— 424
9.5	Final conclusions on AI ethics —— 428
_	
	na Chelly and Hendrik Blockeel
10	Industry examples where different AI techniques are combined —— 431

An AI-enabled chatbot for the Casco insurance industry, an example from

10.2	An automated engineering assistant that uses a mix of learning and reasoning techniques in manufacturing —— 436
10.2.1	The problem setting —— 437
10.2.2	How are those problems solved ? A mix of techniques from Chapters 4, 5 and 7 —— 438
10.2.3	How well does it work? —— 443
Emman	uel Gillain
11	Conclusion – Moving forward —— 445
11.1	So far — 445
11.2	Moving forward —— 445
11.2.1	Hybrid AI systems to merge the best of both worlds —— 446
11.2.2	Cause-effect and causal AI —— 447
11.2.3	Generative AI —— 449
11.3	Final word —— 451
	Trademarks —— 453

Index ---- 455