Contents

Pre	face		V
Lis	t of c	ontributing authors	хi
1	Equations of fluid motion		
	1.1	Basic hypotheses of continuum	1
	1.2	Two methods for the continuum description. Translation formula	4
	1.3	Integral conservation laws. Equations of continuous motion	7
	1.4	Thermodynamics aspects	13
	1.5	Classical models of liquids and gases	16
2	Con	ditions on the interface between fluids and on solid walls	24
	2.1	Notion of the interface	24
	2.2	Kinematic condition	25
	2.3	Dynamic condition	26
	2.4	Elements of thermodynamics of the interface	31
	2.5	Conditions of continuity	33
	2.6	Energy transfer across the interface	34
	2.7	Free surfaces	39
	2.8	Additional conditions	41
3	Mod	dels of convection of an isothermally incompressible fluid	44
	3.1	Isothermally incompressible fluid	44
	3.2	Equations of thermal convection of an isothermally incompressible	
		fluid	46
	3.3	Model of linear thermal expansion	47
	3.4	Some submodels	49
	3.5	On boundary conditions	51
	3.6	Two problems of convection	53

4	Hier	carchy of convection models in closed volumes	60
	4.1	Initial relations	60
	4.2	Similarity criteria	62
	4.3	Transition to dimensional variables	64
	4.4	Expansion in the small parameter	67
	4.5	Equations of microconvection of an isothermally incompressible fluid	71
	4.6	Oberbeck-Boussinesq equations	74
	4.7	Linear model of the transitional process	75
	4.8	Some conclusions	78
	4.9	Convection of nonisothermal liquids and gases under microgravity conditions	81
	4.10	Convection of a thermally inhomogeneous weakly compressible fluid	88
	4.11	Exact solutions in an infinite band	93
	4.12	Analysis of well-posedness of the initial-boundary problem for equations of convection of a weakly compressible fluid	105
5	Inva	ariant submodels of microconvection equations	115
	5.1	Basic model and its group properties	115
	5.2	Optimal subsystems of the subalgebras Θ_1 and Θ_2 , factor-systems, and some solutions	118
	5.3	On one steady solution of microconvection equations in a vertical layer	126
	5.4	Solvability of a nonstandard boundary-value problem	137
	5.5	Unsteady solution of microconvection equations in an infinite band	144
	5.6	Invariant solutions of microconvection equations that describe the motion with an interface	150
6	Gro	oup properties of equations of thermodiffusion motion	157
	6.1	Lie group of thermodiffusion equations	157
	6.2	Group properties of two-dimensional equations	174
	6.3	Invariant submodels and exact solutions of thermodiffusion equations	182

7	Stal	oility of equilibrium states in the Oberbeck-Boussinesq model	198		
	7.1	Convective instability of a horizontal layer with oscillations of temperature on the free boundary	198		
	7.2	Instability of a liquid layers with an interface	208		
	7.3	Convection in a rotating fluid layer under microgravity conditions	217		
8	Small perturbations and stability of plane layers in the				
	mic	roconvection model	227		
	8.1	Equations of small perturbations	227		
	8.2	Stability of the equilibrium state of a plane layer with solid walls	231		
	8.3	Emergence of microconvection in a plane layer with a free boundary	241		
	8.4	Stability of a steady flow in a vertical layer	252		
9	Numerical simulation of convective flows under microgravity				
	con	ditions	263		
	9.1	Numerical methods used for calculations	263		
	9.2	Numerical study of unsteady microconvection in canonical domains with solid boundaries	274		
	9.3	Numerical study of steady microconvection in domains with free boundaries	291		
	9.4	Study of convection induced by volume expansion	307		
	9.5	Convection in miscible fluids	327		
10	Cor	vective flows in tubes and layers	347		
	10.1	Group-theoretical nature of the Birikh solution and its generalizations	347		
	10.2	2 An axial convective flow in a rotating tube with a longitudinal			
		temperature gradient	355		
	10.3	Unsteady analogs of the Birikh solutions	363		
	10.4	Model of viscous layer deformation by thermocapillary forces	377		
Bib	liogr	aphy	401		
Index			415		