Contents

1	Musculoskeletal Biomechanics, an			Elastic, viscoelastic, and plastic	
	Important and Interesting Discipline			deformation	42
	at the Interface between Medical			Hardness	44
	and Natural Sciences	1		Friction	
				Fracture	
2	Basic Concepts from Physics and				
	Mechanics	4	7	Deformation and Strength of	
	Force	4		Structures	48
	Moment	8		Experimental determination of	
	Pressure	11		deformation and strength	49
	Mechanical stress			Deformation and strength of beam-like	
	Mechanical work, energy and power			structures	52
	Stability and instability			Deformation of a beam under tension	-
	Stubility and instability	10		or compression	53
3	Vector Algebra	17		Bending of a beam fixed at one end	
•	The trigonometric functions sine,	• •		Torsion of a beam around its long axis.	
	cosine, and tangent	17		Torsion of a beam around its long axis	J-1
	Representation of vectors		8	Estimation of the Load Transmitted	
	Addition of vectors: graphical procedure	13	O	by Joints of the Human Locomotor	
	in the two-dimensional case	21		System by Means of a Biomechanical	
	Addition of vectors: numerical	21		Model Calculation	57
	procedure	24		Calculation of a joint load in the static	<i>J 1</i>
	Decomposition of a vector into vector	27		case, illustrated with the example of	
	addends	25		the elbow joint	50
	Multiplication of vectors: scalar product	23		Determination of the joint force in the	,,,
	and vector product	25		dynamic case, illustrated with the	
	and vector product	23		example of the ankle joint	61
4	Translation and Rotation in a Plane	28		Determination of the joint force if more	01
7	Translation			than one muscle or ligament force has	
	Rotation			to be taken into account	66
	Combined translation and rotation			to be taken into account	J
	Instantaneous center of rotation		9	Mechanical Aspects of the Hip Joint	60
	Error influences when describing	J1	3	Load on the hip joint in the stance	us
	a motion	33		phase of slow gait	60
	a motion	<i>J</i> 2		Influencing the load on the hip joint	US
5	Mechanical Equilibrium	35		by gait technique, walking aids,	
J	Conditions of static mechanical	,,,		or surgical interventions	72
	equilibrium	35		Determination of the load on the hip	, 2
	Example: calculation of an unknown	<i>J</i> J		joint by gait analysis	71
	moment in the state of static			Measurement of the load on the hip	, ¬
	equilibrium	36		joint by instrumented joint replace-	
	Example: calculation of an unknown	J U		ment	77
	force in the state of static equilibrium	36		Determination of the stress distribution	,,
	Example: calculation of the joint force of	JU		on the surface of the hip joint	70
	a beam balance in static equilibrium	37		Measurement of the pressure distribution	, 0
	a beam balance in static equilibrium	J1		on the surface of the hip joint	ดว
c	Material Properties of Solid Materials	40		Pressure on the articular surface as a	32
6	Elongation and compression			primary cause of arthrosis of the hip	
				joint	၇၁
	Shear	42		JUHIL	22

10	Mechanical Aspects of the Knee Features common to all joints, illustrated by the example of the knee joint Motion of the knee joint Load on the femorotibial and	85 85 88		Relationship between force and electromyography (EMG)	47
	femoropatellar joint	90 96 97	14	Mechanical Properties of Bones 1 Architecture of the bone tissue 1 Stress and strain of inhomogeneous, anisotropic materials	55
11	Mechanical Aspects of the	105		Material properties of cortical bone 1 Architecture and material properties	58
	Lumbar Spine	105		of trabecular bone	29
	the vertebrae in flexion and extension Calculation of the loading of the lumbar spine: two-dimensional	105		bone mineral content in vivo	61
	model	106		in vivo1	63
	The role of intra-abdominal pressure Calculation of the loading of the lumbar	108		Adaptation of bones to mechanical demands	
	spine: three-dimensional model	110	15	Machanical Associate of Chin	60
	Determination of the loading of the lumbar spine from measurements of		15	Mechanical Aspects of Skin	
	intradiskal pressure	110		Material properties	
	Determination of the load on the			Reaction of the skin to mechanical	
	lumbar spine from measurements			factors 1	73
	of stature change	112			
	Recommendations for carrying and lifting	112	۸	oendix 1	77
	Mechanical properties of lumbar	113	whi	Jenuix	,,
	intervertebral disks	117	A1	Loading of the Lumbar Spine when	
	Deformation of disks under load			Sitting or Standing 1	78
	Pressure distribution over the			Loading of the lumbar spine,	
	vertebral endplates	118		determined by measurement of	
	Intradiskal pressure and mechanical function of the disk	110		intradiskal pressure	78
	Compressive strength of lumbar	115		Loading of the lumbar spine, determined from measurement of	
	vertebrae	120		stature change1	80
	Fracture of the vertebral arch			Loading of the lumbar spine, deter-	
	Sequence of events: overload injury -			mined by an EMG-assisted model	
	low back pain – work loss – disability?	105		calculation 1	82
	A warning	125		Biomechanical model comparing spinal	റാ
12	Mechanical Aspects of the Shoulder	129		loading in sitting and standing 1 Conclusions 1	
	Joints of the shoulder girdle			Conclusions	0,3
	Loading of the glenohumeral joint		A2	What do we Know about Primary	
	Stability of the glenohumeral joint	132		Mechanical Causes of Lumbar Disk	
12	Charles and Franchism of Challetel			Prolapse?	
13	Structure and Function of Skeletal Muscle	136		Studies <i>in vitro</i>	85
	Skeletal muscle morphology			prolapse1	ጸና
	The force – length relationship			Epidemiological studies of the relation	00
	The force – velocity relationship			between heavy physical exertions and	
	Theoretical modeling of skeletal muscle			the prevalence of lumbar disk pro-	
	behavior			lapse 1	86
	Mechanical properties of tendons Force regulation in skeletal muscles			Conclusions and outlook 1	88

А3	Influence of Physical Activity on Architecture and Density of Bones. An Overview of Observations in	100		214 216
	Humans Methods for measuring bone density	190	Rotation about an arbitrary axis Motion in three-dimensional space,	218
	and bone mineral content	190	combined from rotation and trans-	
	Effects of increased mechanical			218
	loading		Calculation of the parameters of rota-	
	Effects of reduced mechanical loading		tion and translation in three-dimensional	l
	Summary and outlook	197	space from the coordinates of reference	220
B1	Mathematical Description of Trans-		points and their images Parameters of the motion of a body	220
DI	lation and Rotation in a Plane	100	observed in a laboratory coordinate	
	Cartesian coordinates			221
	Translation		Parameters describing the relative	221
	Rotation			224
	Motion combining translation and			
	rotation	201	B3 Dealing with Errors	227
	Determination of the imaging		Mean and variance	227
	parameters from two points and their		Biological variance	228
	images		Comparing precision among	
	Matrix notation	203	measuring methods or among	
			investigators	
B2	Mathematical Description of		Error propagation	230
	Translation and Rotation in Three-Dimensional Space	205	Calculation of a propagated error using the example of an angle	
	Is it really necessary to deal with the	205	defined by the end points of two	
	description of three-dimensional			231
	rotations in the context of orthopedic		Method of least squares	
	biomechanics?	205		232
	Matrix notation		Fit of two sets of points by translation	
	Coordinates and vectors	210		234
	Coordinate transformations	212		
	Translation in three-dimensional		Designations and Units	237
	space		Pengineran and Chies	
	Rotation in three-dimensional space		T.A.	220
	Rotations about the coordinate axes	213	Index	239