Contents

Peggy Freudenberg, Christoph Schünemann, Tim Felix Kriesten Climate Conditions and Overheating Risk —— 2

1	Introduction —— 2
2	Summer Conditions in Europe —— 3
2.1	Macroclimatic Air Temperature Conditions — 3
2.2	Macroclimatic Solar Radiation Patterns — 5
2.3	Trends in Macroclimatic Weather Conditions — 7
2.3.1	Demographic Trends in Europe —— 8
2.4	Mesoclimatic Conditions —— 9
2.5	Urban Climate and the Heat Island Effect — 10
2.5.1	Urban Temperature Conditions —— 11
2.5.2	Urban Wind Conditions —— 13
2.5.3	Urban Solar Radiation Conditions —— 14
2.5.4	Urban Microclimate —— 15
3	Climate Data for Overheating Risk Assessment —— 16
3.1	Types of Climate Data Sets for Building Simulations —— 16
3.2	Selection Criteria —— 17
3.3	Available Climate Data Sets —— 19
4	Climate Data's Impact on Indoor Overheating Risk 22
4.1	Indoor Overheating Risk based on Measured Climate —— 22
4.2	Indoor Overheating Risk based on Reference Data Sets —— 23
4.3	Indoor Overheating Risk based on Future Data Sets —— 25
4.4	Indoor Overheating Risk and the UHI-Effect in Data Sets —— 26
4.5	Comparative Analysis of Meteorological Data Results —— 28
5	Conclusion —— 32
6	References —— 34

Peggy Freudenberg

Thermal Bearability and Thermal Comfort —— 34

7	Introduction —— 38
8	Thermal Bearability —— 39
8.1	Threshold Values Derived from Mortalities During Heatwaves —— 41
8.2	Threshold Values Derived from Human Thermoregulation —— 42
8.2.1	Threshold Values for Young Healthy Adults —— 43
8.2.2	Threshold Values for Vulnerable People based on Mortalities —— 44
9	Thermal Comfort —— 47
9.1	Heat Balance-Based Thermal Comfort Models —— 48
9.2	Empiric Thermal Comfort Models —— 49
9.2.1	Data Bases for the Empirical Models —— 50
9.2.2	A deeper look at the ASHRAE Global Comfort Database —— 51
9.2.3	Empirical Equations and Their Applications —— 53
9.3	Remark on Combined Models —— 55
10	Conclusion —— 57
11	References —— 58

Sabine Hoffmann, Abolfazl Ganji, Peggy Freudenberg, Christoph Schünemann Building Simulation for Overheating Risk Evaluation and Optimization —— 58

12	Quality Assurance and Error Management —— 64
12.1	Sources of Error —— 64
12.2	Plausibility Checks and Validation —— 66
12.3	Application Criteria for BES-Tools —— 68
13	Modeling Aspects —— 69
13.1	Solar Radiation Gains on Facades and Roofs — 70
13.2	Heat Transfer through Glazing and Fenestration Systems —— 71
13.2.1	Angular Dependency of Solar Heat Gain — 71

13.2.2	Spectrally Selective, Thermochromic, and Electrochromic Glazing
	Systems —— 72
13.2.3	Solar Gains through Shading Systems —— 74
13.3	Heat Transfer through Walls and Thermal Inertia Modelling —— 76
13.3.1	Numerical Solution Techniques for Envelope Simulations —— 77
13.3.2	Challenges of One-Dimensional Modeling in Building Energy
	Simulations — 78
13.3.3	Modelling Latent Heat Storage (Phase Change Materials) —— 79
13.4	Natural Ventilation Modelling —— 81
14	Conclusion —— 84
15	References —— 85

Christoph Schünemann, Peggy Freudenberg, Tim Felix Kriesten Indoor Overheating Assessment —— 82

16	Introduction —— 88
17	Operative Temperature in Comfort Assessment —— 89
18	Threshold Specification —— 91
19	Proposal for a Refined Indicator Set in Residential Buildings —— 90
19.1	Explicit Indicator Set and Limits for Indoor Environments 97
19.2	Application of the Refined Indicator Set —— 100
19.3	Limitations of the Refined Indicator Set —— 106
20	Conclusion —— 107
21	References —— 108

List of Contributors —— 109

Index —— 111