Contents

Ac	knowledgments	i			
Αb	Abstract				
Zu	sammenfassung	v			
1.	Introduction 1.1. Motivation	1 1			
	1.2. Goals of the thesis	4 6			
ı	Analytical complexity of solution methods in Convex Optimization	9			
2.	Convex Optimization and computational tractability 2.1. Mathematical formulation of an optimization problem 2.2. What does computational tractability mean? 2.3. What is a convex optimization problem? 2.3.1. Convexity and other properties of the feasible set 2.3.2. Objective function: convexity and other properties 2.4. Convex optimization problems are polynomially solvable! 2.5. Bregman distances	11 12 13 18 18 20 26 28			
3.	Black-Box optimization methods 3.1. Black-Box Optimization	35			

	3.2.	Dual Averaging schemes	39
	3.3.	Primal-Dual Subgradient methods	43
		3.3.1. Exact subgradients	43
		3.3.2. Stochastic subgradients	45
		3.3.3. How fast can Subgradient methods be?	48
	3.4.	Optimal First-Order methods	49
4.	Solu	ition methods in Structural Optimization	55
	4.1.	· · · · · · · · · · · · · · · · · · ·	56
		4.1.1. Smoothing Techniques	57
		4.1.2. Mirror-Prox methods	62
	4.2.	Interior-Point methods	70
11	Aı	new perspective on the Hedge algorithm	75
5.	Hed	ge algorithm and Dual Averaging schemes	77
٠.	5.1.		79
	5.2.		81
	٠. _ .	5.2.1. Optimal Hedge algorithm	82
		5.2.2. Optimal Time-Independent Hedge algorithm	83
		5.2.3. Optimal Aggressive Hedge algorithm	84
	5.3.	Numerical results	85
Ш		pproximately solving large-scale semidefinite	
	op	timization problems	89
6.		introduction to large-scale Semidefinite Optimization	91
		Some structured semidefinite optimization problems	92
	6.2.	Interior-Point methods in Semidefinite Optimization	95
7.	A m	natrix Hedge algorithm in Semidefinite Optimization	101
	7.1.	The Matrix Multiplicative Weights Update scheme	103
	7.2.	Application in Semidefinite Optimization	105
		7.2.1. Replacement by a cascade of feasibility problems	106
		7.2.2. Arora and Kale's implementation of the	
		feasibility oracle	107
8.	Fror	n SDPs to matrix saddle-point problems	115
	8.1.	J	
	8.2.	An alternative problem transformation	118

	8.3.1. Mirror-Descent schemes applied to the primal problem	$\frac{122}{123}$
	8.3.2. Mirror-Descent methods applied to the dual problem.	124
	8.4. Interior-Point methods for matrix saddle-point problems	127
9.	Smoothing Techniques for matrix saddle-point problems	129
	9.1. Smooth approximation of the primal and of the dual	130
	9.2. Applying an optimal First-Order method	132
10.	Applying randomized Mirror-Prox methods	135
	10.1. Setup of the algorithm	136
	10.2. Complexity of deterministic Mirror-Prox methods	138
	10.3. Randomized Mirror-Prox methods	139
	10.3.1. Randomization strategy	140
	10.3.2. Complexity of randomized Mirror-Prox schemes	142
11.	Numerical results	149
	11.1. Construction of the problem instances	149
	11.2. Implementation details of the methods	150
	11.2.1. Interior-Point methods and	
	randomized Mirror-Descent schemes	150
	11.2.2. (Accelerated) Smoothing Techniques	151
	11.2.3. (Randomized) Mirror-Prox methods	152
	11.3. Comparison of the methods	154
	11.4. Solving very large-scale problems	158
12	Conclusions and outlook	161
	12.1. Conclusions	161
	12.2. Outlook	164
Α.	Regularity of norms	165
В.	Proofs	169
	B.1. Proof of Theorem 3.5	169
	B.2. Proof of Theorem 7.2	172
	B.3. Proof of Proposition 10.1	173
Ril	liography	183