Contents

Preface XI

	C I plu XII
	Color Plates XV
1	Observational Phenomena of Solar Flares 1
1.1	Observational Constraints 1
1.2	Hard X-Ray Light Curves and Spectra 1
1.2.1	Light Curves 1
1.2.2	Photon and Electron Energy Spectra 2
1.2.3	Electron Numbers 4
1.3	Light Curves and Energy Spectra of Gamma-Rays 5
1.3.1	γ-Ray Light Curves 5
1.3.2	Energy Spectra and Abundances of Ions in Flares 6
1.3.3	Ion Numbers 6
1.4	Geometry of Hard X-Ray and Gamma-Ray Sources 7
1.4.1	Differences in Footpoint Spectral Indices 7
1.4.2	Hard X-Ray and Gamma-Ray Source Locations 9
1.5	Pre- and Postflare Hard X-Ray and Radio Emission 9
1.6	Magnetic Field Changes Associated with Flares 11
1.6.1	Local Magnetic Field Variations 11
1.7	UV and Optical Emission 15
1.8	Seismic Responses 16
1.9	Critical Issues 18
,	Particle Acceleration in Flares 21
2 2.1	
	Models of Particle Acceleration 21
2.1.1	Basic Physics 21
2.1.2	Magnetic Reconnection Models Associated with Flares 22
2.1.3	Particle Acceleration in a Reconnecting Current Sheet 26
2.1.4	Particle Acceleration by Shocks and Turbulence 29
2.2	Recent Theoretical Developments 33
2.2.1	Stochastic Acceleration 33
2.2.2	Electron Acceleration in Collapsing Current Sheets 35

Electron Acceleration in Collapsing Current Sheets 35

2.2.3	Particle Acceleration in a Single 3-D RCS with Complicated Magnetic Topology 40
2.2.4	Estimations of Accelerated Particle Parameters 46
2.2.5	Comparison of the Parameters of Accelerated Particles 48
2.2.6	Particle Acceleration in 3-D MHD Models with Fan and Spine
2.2.0	Reconnection 49
2.3	Limitations of the Test-Particle Approach 54
2.3.1	The Polarization Electric Field 55
2.3.2	Turbulent Electric Fields 55
2.4	Particle-in-Cell Simulation of Acceleration in a 3-D RCS 57
2.4.1	Problem Formulation 57
2.4.2	Test-Particle Simulations 60
2.4.3	PIC Simulation Results 62
2.5	Particle Acceleration in Collapsing Magnetic Islands 70
2.5.1	Tearing-Mode Instability in Current Sheets 70
2.5.2	Particle Acceleration in Magnetic Islands – PIC Approach 71
2.6	Limitations of the PIC Approach 74
2.7	Probing Theories versus Observations 76
2.7.1	Interrelation between Acceleration and Transport 76
2.7.2	Testing Acceleration Models against Observational Constraints 77
3	Electron-Beam Precipitation - Continuity Equation Approach 81
3.1	Introduction 81
3.2	Particle Energy Losses 82
3.2.1	Particle Trajectories at Scattering 82
3.2.2	Energy Loss and Momentum Variations 84
3.3	Continuity Equation Approach for Electrons: Pure Collisions 92
3.3.1	Solutions of Continuity Equation for Power-Law Beam Electrons 93
3.3.2	Beam Electron Densities 95
3.3.3	Mean Electron Spectra 96
3.3.4	Hard X-Ray Bremsstrahlung Emission by Beam Electrons 97
3.3.5	Heating Functions 102
3.4	Continuity Equation Approach for Electrons – Pure Electric Field 104
3.4.1	Estimation of the Ohmic Loss Effect 105
3.4.2	Kinetic Solutions for a Pure Electric Field 109
3.4.3	Estimations of Electron-Beam Stability 118
4	Electron Beam Precipitation - Fokker-Planck Approach 121
4.1	General Comments on Particle and Energy Transport 121
4.2	Problem Formulation 122
4.2.1	The Fokker–Planck Equation 122
4 J J	
4.2.2	Normalization of a Distribution Function 124
4.2.3	Dimensionless Equations 125
4.2.3 4.2.4	Dimensionless Equations 125 Integral Characteristics of an Electron Beam 127
4.2.3	Dimensionless Equations 125

4.4.1	Initial Condition 129
4.4.2	Beam Electron Distribution Functions 130
4.4.3	Electron-Beam Density Variations with Depth 140
4.4.4	Mean Electron Fluxes 142
4.5	Time-Dependent Fokker–Planck Equation 143
4.5.1	Initial and Boundary Conditions 144
4.5.2	Relaxation to a Steady State 145
4.6	Regime of a Stationary Injection 147
4.6.1	Distributions of Electron Beams with a Lower-Energy Part 147
4.6.2	Variations of Electron-Beam Density 153
4.6.3	Effects of Magnetic Field Convergence 155
4.6.4	Mean Electron Fluxes of a Steady Beam 159
4.6.5	Plasma Heating by a Stationary Beam in Converging Magnetic Field 159
4.7	Impulsive Injection 161
4.7.1	Mean Electron Flux for Beam Impulse 162
4.7.2	Energy Deposition by a Beam Impulse 164
4.8	Conclusions 167
5	Proton Beam Kinetics 169
5 .1	Proton Beam Distribution Function 169
5.1.1	
5.1.2	Effect of Coulomb Collisions on Proton Precipitation 169 Effect of a Self-Induced Electric Field on Proton Precipitation 172
5.1.3	ı
5.1.4	Effect of Magnetic Field Convergence on Proton Precipitation 172 Effect of Wave–Proton Interaction 172
5.1.5	Collisions versus Kinetic Alfvén Waves: the Effect on Proton Precipitation 174
5.1.6	Fokker–Planck Equation for Proton Beams 176
5.2	Precipitation of Proton Beam: Numerical Simulations 177
5.2.1	Numerical Calculation of Proton Beam Distribution Function 177
5.2.2	Accepted Parameters 179
5.2.3	Proton Beam Distribution Functions 179
5.3	General Discussion of Proton and Electron Precipitation 182
5.3.1	Beam Spectra at Precipitation 182
5.3.2	Energy and Momentum Transfer 182
6	Hydrodynamic Response to Particle Injection 187
6.1	Hydrodynamic Equations 187
6.1.1	Additional Equations 188
6.1.2	Boundary Conditions 189
6.2	Hydrodynamic Responses to Heating by Electron Beams 190
6.2.1	The Heating Functions by High Energy Particles 190
6.2.2	Simulated Heating Functions 190
6.2.3	Hydrodynamics Caused by Electron Beams 192
6.2.4	Hydrodynamics Formed by Mixed Electron and Proton Beams 197
6.2.5	Momenta Delivered by Beams and Hydrodynamic Shocks 199

6.2.6	Comparison of Ambient Heating by Electrons and Protons for 28 October 2003 Flare 200
6.3	Case Study of a Hydrodynamics of the 25 July 2004 Flare 204
6.3.1	Observations 204
6.3.2	Hydrodynamics of Ambient Plasma 211
6.4	Conclusions 213
7	Hard X-Ray Bremsstrahlung Emission and Polarization 215
7.1	Introduction 215
7.2	Stokes Parameters for HXR Emission 216
7.2.1	Geometry of Observations 217
7.2.2	Nonrelativistic HXR Cross-Sections 219
7.2.3	Relativistic Angle-Dependent Cross-Sections 221
7.3	Simulation Results 223
7.3.1	Time-Dependent Hard X-Ray Photon Spectra for a Short Impulse 223
7.3.2	HXR Emission with Nonrelativistic Cross-Sections for Steady
	Injection 224
7.3.3	HXR Emission with Relativistic Cross-Sections for Steady Injection 229
7.3.4	HXR Bremsstrahlung Directivity and Polarization for a Steady Beam
	Injection 234
7.4	Comparison with Observations 239
7.4.1	HXR Bremsstrahlung Photon Spectra 239
7.4.2	HXR Bremsstrahlung Directivity and Polarization 241
7.4.3	Relationships between Electron and HXR Photon Spectra and Electron
•	Numbers 244
8	Microwave Emission and Polarization 247
8.1	General Comments 247
8.2	Evaluation of Models for Electron Precipitation 249
8.3	Gyrosynchrotron Plasma Emissivity and Absorption Coefficient 251
8.4	Gyrosynchrotron Emission from a Homogeneous Source 253
8.4.1	Depth Variations of MW Emission 253
8.4.2	Gyrosynchrotron Emission from a Whole Coronal Magnetic Tube 260
8.5	Comparison with Observations 263
8.5.1	Flare of 23 July 2002 263
8.5.2	Flare of 10 March 2001 265
8.5.3	Simulated HXR and MW Emission 270
8.6	Conclusion 283
9	Langmuir Wave Generation by Electron Beams 287
9.1	Electron Beams and Their Stability 287
9.2	Basic Equations 289
9.2.1	Method of Solution and Model Parameters 290

9.3	Results and Discussion 291
9.3.1	Electric Field Effects on Langmuir Turbulence 291
9.4	Conclusions 298
10	Nonthermal Hydrogen Emission Caused by Electron Beams 301
10.1	Introduction 301
10.2	Nonthermal Excitation and Ionization Rates 302
10.2.1	Beam Electron Density 303
10.2.2	Nonthermal Hydrogen Excitation Rates 304
10.2.3	Nonthermal Hydrogen Ionization Rates 306
10.2.4	Comparison of Thermal and Nonthermal Excitation and Ionization Rates 306
10.3	Hydrogen Emission Produced by Impacts with Beam Electrons 307
10.3.1	Equations of Statistical Equilibrium 309
10.3.2	Radiative Transfer Equations 310
10.3.3	Conservation Equation for a Particle Number 311
10.3.4	Method of Solution 312
10.3.5	Accepted Parameters 313
10.4	Hydrogen Excitation and Ionization 313
10.4.1	Comparison of Nonthermal and Thermal Excitation and Ionization
	Rates 313
10.4.2	Nonthermal Effects on Hydrogen Emission 317
10.4.3	Hydrogen Radiative Losses in Flares 322
10.4.4	Role of Backwarming Heating 322
10.5 .	Interpretation of H_{α} Emission in 25 July 2004 Flare 324
10.5.1	Fast Changes of H_{α} Emission in the Main Flare Event 324
10.5.2	Temporal and Spatial Evolution of the Main Flare Event 325
10.5.3	Resulting H_{α} Emission 328
11	H_{α} -Line Impact Polarization 331
11.1	Introduction 331
11.2	Basic Models 333
11.2.1	Physical Model 333
11.2.2	Kinetic Model 333
11.2.3	Radiative Model 334
11.3	Density Matrix Approach 336
11.3.1	Steady State Equation 336
11.3.2	Radiative Tensor 337
11.3.3	Collisional Tensor 338
11.3.4	Probabilities of Radiative Transitions 338
11.3.5	Probabilities of Collisional Transitions 339
11.3.6	Stokes Parameters 339
11.4	Results and Discussion 340
11.4.1	H_{α} -Line Polarization Profiles 343
11.4.2	Depth and Time Variations of H_{α} -Line Polarization 344
11.4.3	Interpretation of Observational Features 345

x	Contents	
	11.5	Interpretation of Polarimetric H_{α} Observations 346
	11.5.1	Revised Theoretical Model 349
	11.5.2	Results of Observations 353
	11.5.3	Observational Recommendations 356
	11.6	Conclusions 357
	12	Sunquakes Associated with Solar Flares 359
	12.1	First Sunquake of 9 July 1996 Flare 359
	12.1.1	Methods of Sunquake Detection 361
	12.1.2	Results from First Sunquake Detection 363
	12.1.3	Discrepancies between the Parameters Derived and the Basic Flare Theory 364
	12.2	Observations of Other Sunquakes 365
	12.3	Sunquakes Associated with the Flare of 28 October 2003 367
	12.3.1	Hard X-Ray, γ -Ray Emission, and Accelerated Particles in the Earth's Orbit 368
	12.3.2	Observed Seismic Sources 371
	12.3.3	Comparison of Momenta Delivered by Beams and Hydrodynamic Shocks 376
	12.4	Seismic Sources Observed by GONG in 14 December 2006 Flare 378
	12.4.1	Flare Morphology and Evolution 379
	12.4.2	Photospheric and Chromospheric Signatures for the 14 December 2006 Flare 379
	12.4.3	Photospheric Velocities 380
	12.5	Observations of Solar Interior 381
	12.5.1	Validation of Time-Distance Analysis with GONG 383
	12.5.2	Helioseismic Results 383
	12.5.3	Summary of Observed Signatures in Sunquakes 387
	12.6	Theoretical Implications of Particle Kinetics and Dynamics Leading to
		Sunquakes 388
	12.6.1	Topology of Particle Acceleration 388
	12.6.2	Particle Precipitation 389
	1262	Dlagma Dognongog to High Energy Particles 201

12.6.3 Plasma Responses to High-Energy Particles 391

12.7 Nonthermal Ionization and Backwarming Heating 395

12.7.1 Hydrogen Nonthermal Excitation and Ionization 395

12.7.2 The Role of Backwarming Heating 396

12.7.3 Ni-Line Emission 397

12.7.4 Generation of Seismic Response by a Pinpoint Source 401

12.7.5 Magnetic Field Change During Flares 402

12.8 Conclusion 404

References 407

Index 419