Contents

1	Intro	duction	n to Modern Physics	1
	1.1	Fundar	mental Physical Constants	
	1.2	Derive	d Physical Constants and Relationships	4
	1.3	Milesto	ones in Modern Physics and Medical Physics	5
	1.4		al Quantities and Units	
		1.4.1	Rules Governing Physical Quantities and Units	
		1.4.2	The SI System of Units	
		1.4.3	Non-SI Units	
	1.5	Classifi	ication of Forces in Nature	
	1.6		ication of Fundamental Particles	
	1.7		ication of Radiation	
	1.8	Classifi	ication of Ionizing Radiation	10
		1.8.1	Directly and Indirectly Ionizing Radiation	
		1.8.2	Low LET and High LET Radiation	11
		1.8.3	Use of Ionizing Radiation	12
	1.9	Classifi	ication of Directly Ionizing Radiation	13
		1.9.1	Electrons	13
		1.9.2	Positrons	14
		1.9.3	Heavy Charged Particles	14
		1.9.4	Pions	16
	1.10	Classifi	ication of Indirectly Ionizing Photon Radiation	17
	1.11	Radiat	ion Quantities and Units	17
	1.12	Dose D	Distribution in Water for Various	
		Radiat	ion Beams	18
		1.12.1	Dose Distribution in Water for Photon Beams	21
		1.12.2	Dose Distribution in Water for Neutron Beams	21
		1.12.3	Dose Distribution in Water for Electron Beams	22
		1.12.4	Dose Distribution in Water for Heavy	
			Charged Particle Beams	23
		1.12.5	Choice of Radiation Beam and Prescribed	
			Target Dose	24

XXII Contents

1.13	Basic D	efinitions for Atomic Structure	25
	1.13.1	Mean Atomic Mass (Standard Atomic Weight)	26
	1.13.2	Unified Atomic Mass Unit and the Mole	27
	1.13.3	Mean Molecular Mass (Standard Molecular Weight) .	29
1.14	Basic D	efinitions for Nuclear Structure	30
1.15	Nuclear	Binding Energies	31
1.16	Nuclear	Models	33
	1.16.1	Liquid-Drop Nuclear Model	33
	1.16.2	Shell Structure Nuclear Model	34
1.17	Physics	of Small Dimensions and Large Velocities	35
1.18	Planck	Energy Quantization	35
1.19	Quantiz	vation of Electromagnetic Radiation	36
1.20	Special	Theory of Relativity	37
1.21		ant Relativistic Relations	39
	1.21.1	Relativistic Mass	39
	1.21.2	Relativistic Force and Relativistic Acceleration	40
	1.21.3	Relativistic Kinetic Energy	41
	1.21.4	Total Relativistic Energy as a Function	
		of Momentum	43
	1.21.5	Taylor Expansion and Classical Approximations	
		for Kinetic Energy and Momentum	44
	1.21.6	Relativistic Doppler Shift	45
1.22	Particle	Wave Duality	45
	1.22.1	De Broglie Equation and De Broglie Wavelength	46
	1.22.2	Davisson-Germer Experiment	48
	1.22.3	Thomson-Reid Experiment	49
	1.22.4	General Confirmation of Particle – Wave Duality	50
1.23		Waves	51
	1.23.1	Introduction to Wave Mechanics	51
	1.23.2	Quantum Mechanical Wave Equation	52
	1.23.3	Time-independent Schrödinger Equation	54
	1.23.4	Measurable Quantities and Operators	56
	1.23.5	Transition Rate and the Fermi Second Golden Rule .	57
	1.23.6	Particle Scattering and Born Collision Formula	58
1.24	Uncerta	pinty Principle	61
1.25	Comple	ementarity Principle	62
1.26	Emissio	on of Electrons from Material Surface:	
		function	63
1.27		onic Emission	64
1.28	Tunneli	ing	65
	1.28.1	Alpha Decay Tunneling	66
	1.28.2	Field Emission Tunneling	66
1.29	Maxwel	ll Equations	67
1.30	Povntir	g Theorem and Poynting Vector	69

			•	Contents X	XIII
	1.31	Normal	Probability Distribution		. 71
		1.31.1	Standard Probability Density Function		
		1.31.2	Cumulative Distribution Function		
		1.31.3	Error function		
2	Coul	omb Sc	attering		. 77
	2.1	Genera	Aspects of Coulomb Scattering		. 78
	2.2		Marsden Experiment		
		2.2.1	Thomson Model of the Atom		. 80
		2.2.2	Rutherford Model of the Atom		. 82
	2.3	Ruther	ford Scattering		. 83
		2.3.1	Kinematics of Rutherford Scattering		. 83
		2.3.2	Distance of Closest Approach in Head-or	n Collision	
			Between α -Particle and Nucleus		. 85
		2.3.3	General Relationship between Impact Pa	arameter	
			and Scattering Angle		. 87
		2.3.4	Hyperbolic Trajectory and Distance of G	Closest	
			Approach		. 89
		2.3.5	Hyperbola in Polar Coordinates		. 91
	2.4	Cross S	ections for Rutherford Scattering		. 91
		2.4.1	Differential Cross-Section for Rutherford		
			Scattering: Classical Derivation		. 91
		2.4.2	Differential Cross Section for Rutherford		
			Scattering (Quantum-Mechanical Deriva	tion)	. 93
		2.4.3	Screening of Nuclear Potential by Orbita	ıl	
			Electrons		. 94
		2.4.4	Minimum Scattering Angle		. 96
		2.4.5	Effect of the Finite Size of the Nucleus .		. 97
		2.4.6	Maximum Scattering Angle	· • • • • • • • • • • • • • • • • • • •	. 99
		2.4.7	General Relationships for Differential Cr	oss	
			Section in Rutherford Scattering		. 100
		2.4.8	Total Rutherford Scattering Cross Section	n	. 102
		2.4.9	Mean Square Scattering Angle		
			for Single Rutherford Scattering		. 103
		2.4.10	Mean Square Scattering Angle		
			for Multiple Rutherford Scattering		. 105
		2.4.11	Importance of the Rutherford Scattering		
			Experiment		. 106
	2.5	Mott Se	cattering		
		2.5.1	Correction for Electron Spin		
		2.5.2	Correction for Recoil of the Nucleus		
		2.5.3	Differential Cross Section for Mott Scat		
			of Electrons on Point-Like Atomic Nucle		. 114
		2.5.4	Hofstadter Correction for Finite Nuclear		
			and the Form Factor		. 114

XXIV Contents

	2.6	Genera	l Aspects of Elastic Scattering	
		of Char	rged Particles	116
		2.6.1	Differential Scattering Cross Section	
			for a Single Scattering Event	117
		2.6.2	Characteristic Scattering Distance	118
		2.6.3	Minimum and Maximum Scattering Angles	
		2.6.4	Total Cross Section for a Single Scattering Event .	
		2.6.5	Mean Square Scattering Angle for a Single	
			Scattering Event	124
	2.7	Molière	e Multiple Elastic Scattering	
		2.7.1	Mean Square Scattering Angle for Multiple	
			Scattering	127
		2.7.2	Radiation Length	
		2.7.3	Mass Scattering Power	130
		2.7.4	Mass Scattering Power for Electrons	130
		2.7.5	Fermi-Eyges Pencil Beam Model for Electrons	132
		2.7.6	Dose Distribution for Pencil Electron Beam	136
		2.7.7	Determination of Electron beam Kinetic Energy	
			from Measured Mass Scattering Power	137
3	Rutl	nerford-	Bohr Model of the Atom	139
	3.1		Model of the Hydrogen Atom	
		3.1.1	Radius of the Bohr Atom	
		3.1.2	Velocity of the Bohr Electron	142
		3.1.3	Total Energy of the Bohr Electron	
		3.1.4	Transition Frequency and Wave Number	
		3.1.5	Atomic Spectra of Hydrogen	
		3.1.6	Correction for Finite Mass of the Nucleus	145
		3.1.7	Positronium, Muonium, and Muonic Atom	147
		3.1.8	Quantum Numbers	149
		3.1.9	Stern-Gerlach Experiment and Electron Spin	149
		3.1.10	Spin-Orbit Coupling	151
		3.1.11	Successes and Limitations of the Bohr Model	
			of the Atom	151
		3.1.12	Correspondence Principle	152
	3.2	Multi-l	Electron Atom	154
		3.2.1	Exclusion Principle	154
		3.2.2	Hartree Approximation for Multi-Electron Atoms .	155
		3.2.3	Periodic Table of Elements	158
		3.2.4	Ionization Potential of Atoms	161
	3.3	Experi	mental Confirmation of the Bohr Atomic Model	161
		3.3.1	Emission and Absorption Spectra of Monoatomic	
			Gases	163
		3.3.2	Moseley Experiment	164
		3.3.3	Franck-Hertz Experiment	16

	3.4		linger Equation for Hydrogen Atom	
		3.4.1	Schrödinger Equation for Ground State of Hydrogen	
		3.4.2	Sample Calculations for Ground State of Hydrogen	172
4	Proc	duction	of X Rays	177
	4.1	X-Ray	Line Spectra	178
		4.1.1	Characteristic Radiation	179
		4.1.2	Fluorescence Yield and Auger Effect	
	4.2	Emissi	ion of Radiation by Accelerated Charged Particle	
			sstrahlung Production)	185
		$\stackrel{ ightharpoonup}{4}.2.1$	Stationary Charged Particle:	
			No Emission of Radiation	186
		4.2.2	Charged Particle Moving with Uniform Velocity:	
			No Emission of Radiation	186
		4.2.3	Accelerated Charged Particle:	
			Emission of Radiation	191
		4.2.4	Intensity of Radiation Emitted	
			by Accelerated Charged Particle	192
		4.2.5	Power Emitted by Accelerated Charged Particle	
			Through Electromagnetic Radiation	
			(Classical Larmor Relationship)	193
		4.2.6	Relativistic Larmor Relationship	
		4.2.7	Relativistic Electric Field Produced	
			by Accelerated Charged Particle	195
		4.2.8	Characteristic Angle	
		4.2.9	Electromagnetic Fields Produced by Charged	
			Particles	201
	4.3	Synchi	rotron Radiation	
	4.4	J	kov Radiation	
5	Ттто	Dontie	cle Collisions	207
J	5.1		ons of Two Particles: General Aspects	
	5.1		ar Reactions	
	3.2	5.2.1	Conservation of Momentum in Nuclear Reaction	
		5.2.1 $5.2.2$	Conservation of Momentum in Nuclear Reaction	
		5.2.2 $5.2.3$	Threshold Energy for Nuclear Reactions	
	F 0			
	5.3		Particle Elastic Scattering: Energy Transfer	410
		5.3.1	General Energy Transfer from Projectile	017
			to Target in Elastic Scattering	217
		5.3.2	Energy Transfer in a Two-Particle Elastic	010
			Head-on Collision	
		5.3.3	Classical Relationships for a Head-on Collision	218
		5.3.4	Special Cases for Classical Energy Transfer	~-~
			in a Head-on Collision	
		5.3.5	Relativistic Relationships for a Head-on Collision	221

		5.3.6	Special Cases for Relativistic Energy Transfer
		F 0 7	in Head-on Collision
		5.3.7	Collision
			Consider
6	Inter	actions	of Charged Particles with Matter227
	6.1		l Aspects of Energy Transfer from Charged
		Particle	e to Medium
		6.1.1	Charged Particle Interaction with Coulomb Field
			of the Nucleus (Radiation Collision)
		6.1.2	Hard (Close) Collision
		6.1.3	Soft (Distant) Collision
	6.2		l Aspects of Stopping Power
	6.3		ion (Nuclear) Stopping Power
	6.4		on (Electronic) Stopping Power for Heavy Charged
		Particle	es
		6.4.1	Momentum and Energy Transfer from Heavy
			Charged Particle to Orbital Electron
		6.4.2	Minimum Energy Transfer and Mean
			Ionization/Excitation Potential
		6.4.3	Maximum Energy Transfer
		6.4.4	Classical Derivation of the Mass Collision Stopping
			Power
		6.4.5	Bethe Collision Stopping Power
		6.4.6	Fano Correction to Bethe Collision Stopping Power
			Equation
		6.4.7	Collision Stopping Power Equations
			for Heavy Charged Particles
	6.5		on Stopping Power for Light Charged Particles $\dots 254$
	6.6		Mass Stopping Power
	6.7		ion Yield
	6.8		of Charged Particles
		6.8.1	CSDA Range
		6.8.2	Maximum Penetration Depth
		6.8.3	Range of Heavy Charged Particles in Absorbing
			Medium
		6.8.4	Range of Light Charged Particles (Electrons
			and Positrons) in Absorbers
	6.9		Stopping Power
	6.10		eted Collision Stopping Power
	6.11		strahlung Targets
		6.11.1	Thin X-Ray Targets
		6.11.2	Thick X-Ray Targets

7	Inte	ractions	s of Photons with Matter
	7.1	Genera	Al Aspects of Photon Interactions with Absorbers 278
		7.1.1	Narrow Beam Geometry
		7.1.2	Characteristic Absorber Thicknesses
		7.1.3	Other Attenuation Coefficients and Cross Sections 284
		7.1.4	Energy Transfer Coefficient and Energy
			Absorption Coefficient
		7.1.5	Broad Beam Geometry
		7.1.6	Classification of Photon Interactions with Absorber
		*****	Atoms
	7.2	Thoms	on Scattering
	•	7.2.1	Thomson Differential Electronic Cross Section
			per Unit Solid Angle
		7.2.2	Thomson Total Electronic Cross Section
		7.2.3	Thomson Total Atomic Cross Section
	7.3		rent Scattering (Compton Effect)
		7.3.1	Compton Wavelength-Shift Equation
		7.3.2	Relationship Between Scattering Angle and Recoil
			Angle
		7.3.3	Scattered Photon Energy as Function of Incident
		7.0.0	Photon Energy and Photon Scattering Angle 302
		7.3.4	Energy Transfer to Compton Recoil Electron 306
		7.3.5	Differential Electronic Cross Section
		1.0.0	for Compton Scattering
		7.3.6	Differential Electronic Cross Section
		1.0.0	per Unit Scattering Angle
		7.3.7	Differential Electronic Cross Section
		1.0.1	per Unit Recoil Angle
		7.3.8	Differential Klein-Nishina Energy Transfer Cross
		1.5.0	Section
		7.3.9	Energy Distribution of Recoil Electrons
		7.3.10	Total Electronic Klein–Nishina Cross Section
		7.0.10	for Compton Scattering
		7.3.11	Electronic Energy Transfer Cross Section
		1.0.11	for Compton Effect
		7.3.12	Mean Energy Transfer Fraction for Compton Effect . 319
		7.3.12	Binding Energy Effects and Corrections321
		7.3.14	Compton Atomic Cross Section
		1.0.14	and Mass Attenuation Coefficient
		7.3.15	Compton Mass Energy Transfer Coefficient
	7.4		th Scattering
	7.4	7.4.1	Differential Atomic Cross Section for Rayleigh
		1.4.1	Scattering330
		7.4.2	Form Factor for Rayleigh Scattering
		7.4.3	Scattering Angles in Rayleigh Scattering
		1.4.0	Dealiering August in reavers in Dealiering

XXVIII Contents

		7.4.4	Atomic Cross Section for Rayleigh Scattering 334
		7.4.5	Mass Attenuation Coefficient for Rayleigh
			Scattering335
	7.5	Photoe	lectric Effect
		7.5.1	Conservation of Energy and Momentum
			in Photoelectric Effect
		7.5.2	Angular Distribution of Photoelectrons
		7.5.3	Atomic Cross Section for Photoelectric Effect 338
		7.5.4	Mass Attenuation Coefficient
			for Photoelectric Effect
		7.5.5	Energy Transfer to Charged Particles
			in Photoelectric Effect
		7.5.6	Photoelectric Probability
		7.5.7	Fluorescence Yield
		7.5.8	Mean Fluorescence Photon Energy
		7.5.9	Mean Fluorescence Emission Energy
		7.5.10	Mean Photoelectric Energy Transfer Fraction 351
		7.5.11	Mass Energy Transfer Coefficient for Photoelectric
	= 0	n · n	Effect
	7.6		roduction355
		7.6.1	Conservation of Energy, Momentum and Charge
		769	in Pair Production
		7.6.2	Threshold Energy for Nuclear Pair Production and Triplet Production
		7.6.3	Energy Distribution of Electrons and Positrons
		1.0.5	in Nuclear Pair Production and Triplet Production 359
		7.6.4	Angular Distribution of Charged Particles
			in Pair Production
		7.6.5	Nuclear Screening
		7.6.6	Atomic Cross Section for Pair Production
		7.6.7	Mass Attenuation Coefficient for Pair Production 363
		7.6.8	Energy Transfer to Charged Particles in Nuclear
			Pair Production and Triplet Production
		7.6.9	Mass Energy Transfer Coefficient for Pair
			Production
		7.6.10	Positron Annihilation
	7.7	Photor	nuclear Reactions (Photodisintegration)
		7.7.1	Cross Section for Photonuclear Reaction
		7.7.2	Threshold Energy for Photonuclear Reaction 374
٥	Ena		material ID. All 11 TO 1
8			nsfer and Energy Absorption in Photons with Matter377
	8.1		scopic Attenuation Coefficient
	8.2		y Transfer from Photons to Charged Particles
	0.2		orber
		8.2.1	General Characteristics of the Mean Energy
			Transfer Fractions

		8.2.2	Relative Weights for Individual Effects	. 384
		8.2.3	Regions of Predominance for Individual Effects	
		8.2.4	Mean Weighted Energy Transfer Fractions	
		8.2.5	Total Mean Energy Transfer Fraction	
		8.2.6	Mass Energy Transfer Coefficient	
		8.2.7	Mean Energy Transferred from Photon to Charged	
			Particles	. 393
	8.3	Energy	y Absorption	
		8.3.1	Mean Radiation Fraction	
		8.3.2	Total Mean Energy Absorption Fraction	
		8.3.3	Mass Energy Absorption Coefficient	
		8.3.4	Mean Energy Absorbed in Absorbing Medium	
	8.4	Coeffic	cients of Compounds and Mixtures	
	8.5		s Following Photon Interactions	_
			Absorber	. 409
	8.6		ary of Photon Interactions	
		8.6.1	Photoelectric Effect	
		8.6.2	Rayleigh Scattering	
		8.6.3	Compton Effect	
		8.6.4	Pair Production	
		8.6.5	Photonuclear Reactions	
	8.7	Sampl	e Calculations	
		8.7.1	Example 1: Interaction of 2 MeV Photon	
		01111	with Lead Absorber	. 418
		8.7.2	Example 2: Interaction of 8 MeV Photon	
		o <u>-</u>	with Copper Absorber	. 421
			with copper Hosoiser	
9	Inte	ractions	s of Neutrons with Matter	. 429
	9.1		al Aspects of Neutron Interactions with Absorbers	
	9.2		on Interactions with Nuclei of the Absorber	
		9.2.1	Elastic Scattering	. 431
		9.2.2	Inelastic Scattering	
		9.2.3	Neutron Capture	
		9.2.4	Spallation	
		9.2.5	Nuclear Fission Induced by Neutron Bombardment.	
	9.3	Neutro	on Kerma	
	9.4		on Kerma Factor	
	9.5		on Dose Deposition in Tissue	
		9.5.1	Thermal Neutron Interactions in Tissue	
		9.5.2	Interactions of Intermediate and Fast Neutrons	
		5.c. _	with Tissue	. 439
	9.6	Neutro	on Beams in Medicine	
	0.0	9.6.1	Boron Neutron Capture Therapy (BNCT)	
		9.6.2	Radiotherapy with Fast Neutron Beams	
		J.U.4	Tradicinorapy with Last Matter Deams	. 112

		9.6.3	Machines for Production of Clinical Fast Neutron	
			Beams	3
		9.6.4	Californium-252 Neutron Source	3
		9.6.5	In-vivo Neutron Activation Analysis44	7
	9.7	Neutro	n Radiography	3
10	Kine	tice of l	Radioactive Decay45	1
10	10.1		l Aspects of Radioactivity	
	10.2	Decay	of Radioactive Parent into a Stable Daughter	4
	10.2		ctive Series Decay	
	10.0	10.3.1	$Parent \rightarrow Daughter \rightarrow Granddaughter$	
		10.0.1	Relationships	8
		10.3.2	Characteristic Time	
	10.4	-0.0	l Form of Daughter Activity	
	10.5		ria in Parent–Daughter Activities	
		10.5.1	Daughter Longer-Lived than Parent	
		10.5.2	Equal Half-Lives of Parent and Daughter46	
		10.5.3	Daughter Shorter-Lived than Parent:	
			Transient Equilibrium	7
		10.5.4	Daughter much Shorter-Lived than Parent:	
			Secular Equilibrium	8
		10.5.5	Conditions for Parent–Daughter Equilibrium 46	9
	10.6	Batema	an Equations for Radioactive Decay Chain 470	0
	10.7	Mixtur	e of Two or More Independently Decaying	
		Radion	uclides in a Sample	1
	10.8	Branch	ing Decay and Branching Fraction47	2
11	Mod	\mathbf{les} of \mathbf{R}	adioactive Decay47	5
	11.1		action to Radioactive Decay Processes	
	11.2	Alpha	Decay47	8
		11.2.1	Decay Energy in Alpha Decay47	9
		11.2.2	Alpha Decay of Radium-226 into Radon-22248	1
	11.3	Beta D	Decay	3
		11.3.1	General Aspects of Beta Decay	3
		11.3.2	Beta Particle Spectrum	4
		11.3.3	Daughter Recoil in Beta Minus and Beta	
			Plus Decay	
	11.4		Inus Decay	
			General Aspects of Beta Minus Decay	
		11.4.2	Beta Minus Decay Energy48	
		11.4.3	Beta Minus Decay of Free Neutron into Proton 48	
		11.4.4	Beta Minus Decay of Cobalt-60 into Nickel-60 49	
		11.4.5	Beta Minus Decay of Cesium-137 into Barium-137 49	
	11.5		Plus Decay	
		11.5.1	General Aspects of the Beta Plus Decay	
		11.5.2	Decay Energy in Beta Plus Decay	3

		11.5.3	Beta Plus Decay of Nitrogen-13 into Carbon-13 494
		11.5.4	Beta Plus Decay of Fluorine-18 into Oxygen-18 495
	11.6	Electron	n Capture496
		11.6.1	Decay Energy in Electron Capture
		11.6.2	Recoil Kinetic Energy of Daughter Nucleus
			in Electron Capture Decay
		11.6.3	Electron Capture Decay of Beryllium-7
			into Lithium-7498
		11.6.4	Decay of Iridium-192
	11.7	Gamma	a Decay
		11.7.1	General Aspects of Gamma Decay500
		11.7.2	Emission of Gamma Rays in Gamma Decay 501
		11.7.3	Gamma Decay Energy
		11.7.4	Resonance Absorption and Mössbauer Effect 502
	11.8	Interna	l Conversion
		11.8.1	General Aspects of Internal Conversion 503
		11.8.2	Internal Conversion Factor
	11.9	Spontar	neous Fission
	11.10		Emission Decay
			Decay Energy in Proton Emission Decay 506
			Example of Proton Emission Decay
			Example of Two-Proton Emission Decay 508
	11.11		n Emission Decay
			Decay Energy in Neutron Emission Decay 509
			Example of Neutron Emission Decay511
			of the Nuclides (Segrè Chart)
	11.13	Summa	ry of Radioactive Decay Modes
12	Dusal		of Radionuclides
L.Z	12.1		of Radioactive Elements (Radionuclides)
	$12.1 \\ 12.2$		lly-Occuring Radionuclides
	$12.2 \\ 12.3$		ade (Artificial) Radionuclides
	12.3 12.4		uclides in the Environment
	$12.4 \\ 12.5$		Aspects of Nuclear Activation
	12.0	12.5.1	Nuclear Reaction Cross Section
		12.5.1 $12.5.2$	Thin Targets
		12.5.2 $12.5.3$	Thick Target
	12.6		Activation with Neutrons (Neutron Activation) 530
	14.0	12.6.1	Infinite Number of Parent Nuclei: Saturation Model . 530
		12.6.1 $12.6.2$	Finite Number of Parent Nuclei: Depletion Model 533
		12.6.2 $12.6.3$	Maximum Attainable Specific Activities
		14.0.0	in Neutron Activation
		12.6.4	Examples of Parent Depletion: Neutron Activation
		12.0.4	of Cobalt-59, Iridium-191, and Molybdenum-98 544

XXXII Contents

		12.6.5	Neutron Activation of the Daughter:	
			The Depletion–Activation Model	. 547
		12.6.6	Example of Daughter Neutron Activation:	
			Iridium-192	. 550
		12.6.7	Practical Aspects of Neutron Activation	. 556
	12.7	Nuclear	Fission Induced by Neutron Bombardment	. 557
	12.8	Nuclear	Chain Reaction	. 560
		12.8.1	Nuclear Fission Chain Reaction	. 560
		12.8.2	Nuclear Reactor	. 561
		12.8.3	Nuclear Power	. 563
		12.8.4	Nuclear Fusion Chain Reaction	. 564
	12.9	Produc	tion of Radionuclides with Radionuclide Generator	. 566
		12.9.1	Molybdenum – Technetium Decay Scheme	
		12.9.2	Molybdenum – Technetium Radionuclide Generator	. 569
		12.9.3	Production of Molybdenum-99 Radionuclide	. 571
	12.10		Activation with Protons	
		and He	avier Charged Particles	.571
			Nuclear Reaction Energy and Threshold Energy	
		12.10.2	Targets in Charged Particle Activation	. 574
13	Wave	eguide '	Theory	. 577
	13.1		ave Propagation in Uniform Waveguide	
	13.2		ary Conditions	
	13.3	Differen	ntial Wave Equation in Cylindrical Coordinates	. 581
	13.4	Electric	and Magnetic Fields in Uniform Waveguide	. 588
	13.5	Genera	l Conditions for Particle Acceleration	. 589
	13.6	Dispers	ion Relationship	. 590
	13.7		erse Magnetic TM ₀₁ Mode	
	13.8		nship Between Radiofrequency Phase Velocity	
		and Ele	ectron Velocity in Uniform Waveguide	. 596
	13.9	Velocit	y of Energy Flow and Group Velocity	. 597
	13.10	Disk-Lo	paded Waveguide	. 599
	13.11	Captur	e Condition	. 602
14	Parti	icle Acc	celerators in Medicine	. 609
	14.1	Basic (Characteristics of Particle Accelerators	. 610
	14.2	Practic	al Use of X Rays	. 611
		14.2.1	Medical Physics	. 611
		14.2.2	Industrial Use of X Rays	
		14.2.3	X-Ray Crystallography	
		14.2.4	X-Ray Spectroscopy	
		14.2.5	X-Ray Astronomy	
	14.3	Practic	al Considerations in Production of X Rays	

14.4	Traditional Sources of X Rays: X-Ray Tubes		. 615
	14.4.1	Crookes Tube and Crookes X-Ray Tube	. 617
	14.4.2	Coolidge X-Ray Tube	. 619
	14.4.3	Carbon Nanotube Based X-Ray Tube	. 620
14.5	Circula	r Accelerators	. 622
	14.5.1	Betatron	. 622
	14.5.2	Cyclotron	. 625
	14.5.3	Microtron	. 628
	14.5.4	Synchrotron	. 628
	14.5.5	Synchrotron Light Source	. 629
14.6	Clinica	l Linear Accelerator	. 630
	14.6.1	Linac Generations	. 630
	14.6.2	Components of Modern Linacs	. 631
	14.6.3	Linac Treatment Head	. 633
	14.6.4	Configuration of Modern Linacs	. 635
	14.6.5	Pulsed Operation of Linacs	. 637
	14.6.6	Practical Aspects of Megavoltage X-Ray Targets	
		and Flattening Filters	. 639
Appendi	ces	s of Nuclides Presented in this Book	. 647
		istics of the Main Radioactive Decay Modes	
Dasic Ci.	iai actei	istics of the Main Radioactive Decay Modes	. 001
Short Bi	ographi	ies of Scientists Whose Work is Discussed in	
			. 657
Roman I	Letter S	lymbols	. 703
Greek L	etter Sy	ymbols	. 713
Acronyn	ns		. 717
		bases of Interest in Nuclear l Physics	. 719
Internati	onal O	ganizations	. 725
Nobel P	rizes for	Research in X Rays	. 727
Index			729