

Contents

Preface	VI
CHAPTER 1	
INTRODUCTION TO THE PROBABILISTIC ANALYSIS	1
1.1 Historical Remarks on Probability and its Application in Mechanics	1
(i) The notion of probability	1
(ii) Continuity and discontinuity	2
(iii) Determinism and Probabilism	3
1.2 Topological Spaces, Sets and Operators	6
(i) Topological Spaces and Sets	6
(ii) Vector spaces and convexity	9
(iii) Linear operators and bilinear forms	14
1.3 Probability and Random Variables	19
(i) Probability	19
(ii) Random variables	21
1.4 Probability Measures	31
(i) General remarks on measures	32
(ii) Probability measures	35
1.5 Dependence of Random variables	38
(i) Independent random variables	38
(ii) Dependent random variable	42
1.6 Stochastic Processes	45
(i) Characteristics of stochastic processes	45
(ii) Regularity and Continuity	47
(iii) Some basic stochastic processes	50
(iv) Random fields	57

CHAPTER 2	
PHENOMENOLOGY OF DISCRETE MEDIA	62
2.1 Classification of Materials	62
(i) Introduction	62
(ii) Classification of microstructures	63
(iii) Idealized microstructures and fundamental concepts	67
2.2 Statistical Models of Discrete Media	73
(i) Disorder effects	74
(ii) The local approach	74
(iii) Molecular dynamics and correlation functions	75
(iv) Lattice models	88
(v) Percolation models	90
2.3 Probabilistic Models of Discrete Media	95
(i) Introduction	95
(ii) Observables and States	96
(a) Observables	96
(b) State-space representation	98
(iii) The state-space and constitutive maps	102
2.4 Markov Processes and Stochastic Differential Equations	106
(i) Markov processes	107
(ii) Stochastic differential equations	123
CHAPTER 3	
RANDOM EVOLUTION AND GEOMETRIC PROBABILITIES	133
3.1 Wide-sense Markov Processes	133
(i) Wide-sense Markov processes	133
(ii) Partially observed Markov processes	136
(iii) Random evolution of discrete media	140
(a) Transient behaviour of a structured solids	141
(b) Evolution relations for simple fluids	145

3.2 Interaction effects in Discrete Media	150
(i) Interaction potentials	151
(ii) Stochastic models of interfacial behaviour in solids	156
(iii) Markov models of bond failure and fracture in solids	166
(iv) Interfaces in fluids	177
3.3 Introduction to Geometric Probabilities	189
(i) Introduction	189
(ii) Random sets	190
(iii) Random point models	196
(a) The Boolean model	197
(b) Other point models	200
3.4 Some Fundamental Concepts of Stereology	208
 CHAPTER 4	
APPLICATIONS OF THE STOCHASTIC ANALYSIS	215
4.1 The Response Behaviour of Discrete Solids	215
(i) A general stochastic deformation theory	216
(ii) Deformational stability of structured solids	223
(iii) The inelastic behaviour multi-component solids	229
(iv) General remarks on material operators	233
4.2 The response of Polycrystalline Solids	240
(i) The elastic response including interactions	240
(ii) Inelastic behaviour of MC-systems (application of Point processes)	248
(iii) Dynamics of structured solids	255
(a) Stochastic models of wave propagation	255
(b) Application of the Monte-Carlo simulation	260
4.3 The Stochastic Analysis of Fibrous and Polymeric Networks	263
(i) Stochastic mechanics of fibrous structures	264
(ii) Stochastic analysis of polymer melts	275
(a) Poissonian behaviour of entanglement of the polymers	278
(b) Local balance relations and flow dynamics	286

4.4 Simple Fluids and the Flow in Fully Saturated Porous Media	290
(i) The dynamics of discrete fluids	291
(ii) Markov theory in the mechanics of discrete fluids	296
(iii) Flow through a fully saturated porous medium	300
REFERENCES	312
SUBJECT INDEX	330