Contents

ς	ession	1:	Semantics	T
J	6331011	1.	Semantics	4

Soundness and Completeness of Partial Deductions for Well-Founded Semantics 1 Halina Przymusinska, Teodor Przymusinski, Hirohisa Seki
Session 2: Non-Resolution Theorem Proving I
On Deductive Planning and the Frame Problem
On Resolution in Fragments of Classical Linear Logic
A Procedure for Automatic Proof Nets Construction
Session 3: Constraints
Free Logic and Infinite Constraint Networks
Session 4: Data Bases and Knowledge Bases
Towards Probabilistic Knowledge Bases
Two-Level Grammar: A Functional/Logic Query Language for Database and Knowledge-Base Systems
Extending Deductive Database Languages by Embedded Implications

Session 5: Resolution Theorem Proving

Controlling Redundancy in Large Search Spaces: Argonne-Style Theorem Proving Through the Years
Resolution for Many-Valued Logics
An Ordered Theory Resolution Calculus
Application of Automated Deduction to the Search for Single Axioms for Exponent Groups
Session 6: Theorem Proving and Complexity
Elementary Lower Bounds for the Lengths of Refutations
Shortening Proofs by Quantifier Introduction
Session 7: Implementation Aspects
Reform Compilation for Nonlinear Recursion
Pruning Infinite Failure Branches in Programs with Occur-Check
Session 8: Logical Frameworks
The Use of Planning Critics in Mechanizing Inductive Proofs
$\lambda \mu$ -Calculus: An Algorithmic Interpretation of Classical Natural Deduction 190 Michel Parigot

Building Proofs by Analogy via the Curry-Howard Isomorphism
On the Use of the Constructive Omega-Rule Within Automated Deduction 214 Siani Baker, Andrew Ireland, Alan Smaill
Session 9: Parallel Theorem Proving and Logic Programming
OR-Parallel Theorem Proving with Random Competition
Parallel Computation of Multiple Sets-of-Support
Towards Using the Andorra Kernel Language for Industrial Real-Time Applications
Session 10: Unification and Equality I
Unification in a Combination of Equational Theories with Shared Constants and its Application to Primal Algebras
Non-Clausal Resolution and Superposition with Selection and Redundancy Criteria
Relating Innermost, Weak, Uniform and Modular Termination of Term Rewriting Systems
Session 11: Semantics II
A Two Step Semantics for Logic Programs with Negation

Generalized Negation as Failure and Semantics of Normal Disjunctive Logic Programs
General Model Theoretic Semantics for Higher-Order Horn Logic Programming
Session 12: Extensions of Logic Programming
Disjunctive Deductive Databases
Netlog — A Concept Oriented Logic Programming Language
From the Past to the Future: Executing Temporal Logic Programs
Session 13: Non-Resolution Theorem Proving II
Computing Induction Axioms
Session 14: Specification and Verification
Consistency of Equational Enrichments
A Programming Logic for a Verified Structured Assembly Language
Session 15: Unification and Equality II
The Unification of Infinite Sets of Terms and its Applications

XIII

Unification in Order-Sorted Type Theory
Infinite, Canonical String Rewriting Systems Generated by Completion
System Descriptions
Spes: A System for Logic Program Transformation
Linear Objects: A Logic Framework for Open System Programming
ISAR: An Interactive System for Algebraic Implementation Proofs
Mathpert: Computer Support for Learning Algebra, Trig and Calculus
MegaLog — A Platform for Developing Knowledge Base Management Systems 457 Jorge Bocca, Michael Dahmen, Michael Freeston
SPIKE, an Automatic Theorem Prover
An Application to Teaching in Logic Course of ATP Based on Natural Deduction
A Generic Logic Environment
ElipSys. A Parallel Programming System Based on Logic
Opium — A High Level Debugging Environment

XIV

An Inductive Theorem Prover Based on Narrowing
A Cooperative Answering System
MIZ-PR: A Theorem Prover for Polymorphic and Recursive Functions
ProPre. A Programming Language with Proofs
FRIENDLY-WAM: An Interactive Tool to Understand the Compilation of Prolog
SEPIA: A Basis for Prolog Extensions
The External Database in SICStus Prolog
The KCM System: Speeding-up Logic Programming Through Hardware Support
Logician's Workbench 498 Igor Romanenko
EUODHILOS: A General Reasoning System for a Variety of Logics
The EKS-VI System
CHIP and Propia