Contents

1	Intr	oduct	ion	1				
2	Thermodynamic Systems							
	2.1	The M	Macroscopic level	7				
		2.1.1	The 0. Law of Thermodynamics: The Existence of Temperature	7				
		2.1.2	The 1. Law of Thermodynamics: The Macroscopic Energy					
			Principle	8				
		2.1.3	The 2. Law of Thermodynamics: The Law of Entropy	9				
		2.1.4	The 3. Law of Thermodynamics: The Limit Value Condition					
			at the Zero Point of the Absolute Temperature	10				
	2.2	The M	Microscopic Level	11				
		2.2.1	The Molecular Energy	11				
		2.2.2	The Statistical Definition of Entropy	12				
	2.3	Statis	tics and Phase Transitions	19				
		2.3.1	Remarks on Landau's Theory	20				
		2.3.2	The Correlated Statistics	23				
3	Asp	spects of System Theory 26						
	3.1	Inforn	nation	27				
		3.1.1	The Basic Information Expression	27				
		3.1.2	The Meaning of Information	27				
		3.1.3	The Measurement Integral Formalism	29				
		3.1.4	Information and Measurement	30				
	3.2	The M	Maximum Information Entropy Principle	31				
		3.2.1	The Basic Principle	31				
		3.2.2	The General Solution of the Basic Principle	32				
		3.2.3	The General Principle	33				
		3.2.4	Some Additional Remarks	34				
	3.3	The T	Caylor Approximation	34				
		3.3.1	The Expansion	34				
		3.3.2	The Product Brackets	36				
4	Sys	tem A	nalysis	37				
	4.1		Basic Equation System	39				
	4.2		r Determination Equations	40				
	4.3		Ion-Linear Inversion Problem	41				
	-	4.3.1	Some Numerical Results	42				
		4.3.2	The Problem of Partition Functions	48				
		4.3.3	Critical Hyper-Surface Equations	58				

		4.3.4	The Problem of One- and Two-Dimensional Hyper-Surface	64
			Equations of Fourth Order	
		4.3.5	Self-Similarity in Mathematical Terms	74
		4.3.6	The Problem of High-Dimensional Hyper-Surface Equations	
			of Fourth Order	75
		4.3.7	Universal Hyper-Surface Equations	82
		4.3.8	Functional Hyper-Surface Equations	89
5	Stat		Evolution Equations	93
	5.1	A Uni	versal Evolution Equation	94
		5.1.1	The Structure of the Signal	94
		5.1.2	The Basic Differential Equation	94
		5.1.3	The Multi-System Equation	97
		5.1.4	The Correlated Langevin Equation	97
		5.1.5	The Power Series of the Time Difference	98
		5.1.6	The Mean Values of the Fluctuation Forces and the Action	
			Factor	99
		5.1.7	A Basic Borderline Case	101
	5.2	Differe	ential Equations of the Kinetic Type	102
		5.2.1	The Correlation Function Replacement	103
		5.2.2	The Kinetic Differential Equations	105
		5.2.3	Kinetic Differential Equations with Potentials. Kinetic Differ-	
			ential Equations of the Stationary Schrödinger Type	105
	5.3	Ensen	nble Equations	107
		5.3.1	The First Step: A Quasi-Time-Dependent Kinetic Equation .	107
		5.3.2	The Second Step: Ensemble Functions	108
		5.3.3	The Third Step: Ensemble Equations	
		5.3.4	Master Equations	109
		5.3.5	Ensemble Equations of the Fokker-Planck- and of the Schrö-	
			dinger Type	113
	5.4	Soluti	ions	112
		5.4.1	Solutions of Impulse Forms and the MIEP	
		5.4.2	Solutions of Kinetic Equations and Parabolic Cylinder Func-	
			tions	113
		5.4.3	The General Solution of the Master Equation	
	5.5	Mean	ing and Applicability	
6	The	Lase	r, a Self-Organizing System	130
J	6.1		Ensemble Level of the Laser Activity	
	J.1	6.1.1	Laser Equations of the Molecular Ensemble	
		6.1.2	The Slaving Principle and Order Parameters	
	6.2		Statistical Level of the Laser Activity	
	0.2	6.2.1	The Langevin Level	
		6.2.2		

		6.2.3	Stationary Solutions	. 140
		6.2.4	Micro- and Macro-States. Hyper-Surface Equations	
7	A an	oota o	f Quantum System Theory	151
	7.1			
	7.2			
			sic Evolution Equation	
	7.3	-	nan's Path Integrals	
		7.3.1	The Method of Green's Function	
		7.3.2	The Feynman Kernel	. 156
		7.3.3	The Statistical Basic Function	
		7.3.4	The Statistical Basic Principle	
		7.3.5	Feynman Kernels. A Basic Calculation Procedure	
		7.3.6	The Eigenfunction Structure	
		7.3.7	The Principle of Coupling of Elementary Systems	
		7.3.8	Hyper-Surface Equations in the Context of Quantum System	
			Theory	
		7.3.9	Physical Meaning and Reference Frame	
			Path Integrals of the Fokker-Planck Type	
	7.4	State	Functions and Measurement	
		7.4.1	Stationary Solutions and Measurement	
		7.4.2	Ensemble Functions and Measurement	
	7.5	Heiser	nberg's Formalism	. 182
		7.5.1	The Basic Formalism	. 182
		7.5.2	Creation and Annihilation Operators	. 184
		7.5.3	The Second Quantization	. 187
		7.5.4	Laser Equations of the Heisenberg Type	
		7.5.5	Additional Comments	. 197
8	Info	rmati	on	199
	8.1	Inforn	nation and Phase Transition	
		8.1.1	Information of a One-Mode Laser	
		8.1.2	The Multi-Mode Laser and Self-Similarity	
	8.2		nation and Distribution Width	
		8.2.1	Analytical and Numerical Facts	
		8.2.2	The Essence	
	8.3		nation and Multi-Particle Systems	
	0.0	8.3.1	Analytical and Numerical Facts	
		8.3.2	The Essence	
	8.4		nation and Human Life	
	0.4	HIOTH	iation and fidulatione	
9			Relativistic System Theory	210
	9.1		tz Transformations	
	9.2		tz Covariant Evolution Equations of Particle Physics	
		9.2.1	Macroscopic Equations: The Maxwell Equations	
		9.2.2	Microscopic Equations: Klein-Gordon- and Dirac Equation .	. 214

Contents

	9.2.3 Wave Functions and Spinors	. 221					
9.3	Metric	. 225					
	9.3.1 Fundamental Metric Tensor, Co- and Contravariance	. 225					
	9.3.2 Geodetic Lines						
	9.3.3 Einstein's Field Equation of Gravitation	. 230					
9.4	Background Functions						
	9.4.1 The Definition						
	9.4.2 The Principle of Superposition of Elementary Functions	. 235					
	9.4.3 Self-Consistency Equations	. 236					
9.5	The Riemann Universe						
	9.5.1 The Definition	. 239					
	9.5.2 Reference Frame Transformations and Riemann Universe .	. 239					
9.6	The Underlying Universe	. 240					
		0.41					
	iversality in Statistical Physics and Synergetics	241					
10.1	The Highest Level of Consideration						
	10.1.1 The Riemann Universe						
	10.1.2 Self-Consistency Equations						
	10.1.3 The Euclidean Space						
10.2	The Physical Systems Considered in this Book						
	10.2.1 Multi-Component Systems						
	10.2.2 Statistical Description						
	10.2.3 Synergetic Systems						
	10.2.4 Micro- and Macro-Levels						
10.3	Universality						
	10.3.1 Extreme Principles						
	10.3.2 Covariance						
	10.3.3 Patterns, Self-Similarity						
	10.3.4 Self-Organization						
	10.3.5 The Slaving Principle						
	10.3.6 Phase Transitions						
	10.3.7 Hyper-Surface Equations						
	10.3.8 The Statistical Basic Function						
	10.3.9 Path Integrals, a General Calculation Procedure						
	10.3.10 The Principle of Coupling of Elementary Systems						
	10.3.11 Statistical Evolution Equations						
	10.3.12 Information						
	10.3.13 Reference Frame Transformations						
	10.3.14 Riemann Universe, Metric						
10.4	The Comprehensive Structure of this Book	. 247					
Bibliography 24							
Index	Index						