Contents

1	Lie methods in optics: an assessment					
	PETER W. HAWKES					
	1.1	The arrival of Lie methods on the optical scene; a qualitative				
		survey	1			
	1.2	Pre-Lie and post-Lie	4			
	1.3	Concluding remarks	12			
	1.4	References	13			
2	Holographic image processing, coherent optical computing,					
	and	and neural computer architecture for pattern recognition				
	WA	LTER SCHEMPP	19			
	2.1	Introduction	20			
	2.2	Sequential data compression	21			
	2.3	Applications: CD-A, CD-ROM and CD-E	23			
	2.4	Parallel two-dimensional data compression	27			
	2.5	The holographic geometry is sub-Riemannian	29			
	2.6	Holographic reciprocity and coupling	30			
	2.7	Elementary holograms and complete bipartite graphs	31			
	2.8	Holographic invariants and linear optical phase conjugation	32			
	2.9	Cascaded acousto-optic real-time kernel implementation	33			
	2.10	Classification of pixel mappings and holographic				
		interferometry	35			
	2.11	Non-linear real-time optical phase conjugation	38			
		The classical SAR processing architecture	38			
		Neural computer architecture for pattern recognition	40			
		Conclusions	42			
		Acknowledgements	43			
		References	43			
3	Canonical integration and analysis of periodic maps using					
•	non-standard analysis and Lie methods					
		ENNE FOREST AND MARTIN BERZ	47			
	3.1		47			
		•				

	3.2	Conventional approach for the	study of $G(s; s+1)$	48
		•		48
		3.2.2 Normalization of $H(t)$		49
			ods	49
	3.3	A new approach for the study		50
	3.4	Canonical integration in the sy	mplectic group	52
		3.4.1 Explicit integration in a	Lie group	52
		3.4.2 Implicit integration in a	Lie group	53
				54
	3.5	Non-standard analysis and its	application to map extraction	54
	3.6	Normal form procedures on a p	ower series map	58
		3.6.1 A first order calculation	on the Lie representation .	58
		3.6.2 Conclusion: to higher of	rder with the differential	
		algebra tools		60
	3.7	The Floquet representation and	d its Hamiltonian-free	
		description		61
		3.7.1 The old way: normalizing	ng the hamiltonian	61
		3.7.2 Conclusion on Hamilton	nian normalization	62
		3.7.3 Floquet transformation	on the map	62
	3.8	Acknowledgements		64
	3.9	References		64
	~		3 C	
4		ncatenation of Lie Algebraic		67
		M M. HEALY AND ALEX J. DR		67
	4.1			68
			ology	69
	4.0		ion	70
	4.2	Ideal structure of the Lie algeb		70
		-		73
	4.0	•	ts	76
	4.3	3		
		4.3.1 The exchange rule		76
			ions and factoring a single	77
	4.4			79
	4.4	• •		19
		<u> </u>	formations into standard	00
				80
			term	80
		4.4.3 Moving second-order te	erms	84
		4.4.3 Moving second-order to 4.4.4 Moving higher-order te	rms	84 85
	4.5	4.4.3 Moving second-order to 4.4.4 Moving higher-order to Summary	rms	84 85 87
	4.A	4.4.3 Moving second-order to 4.4.4 Moving higher-order to Summary	rms	84 85 87 88
	4.A 4.B	4.4.3 Moving second-order to 4.4.4 Moving higher-order to Summary	rms	84 85 87 88 90
	4.A	4.4.3 Moving second-order to 4.4.4 Moving higher-order to Summary	erms	84 85 87 88

	4.7	References	94		
5	-	persion-diffraction coupling in anisotropic media and biguity function generation	l		
	Mos	SHE NAZARATHY, JOSEPH W. GOODMAN,			
	AND	MARK KAUDERER	97		
	5.1	Introduction	97		
	5.2	Dispersion relations in linear homogeneous media	98		
	5.3	Plane wave spectrum representation	101		
	5.4	Canonical operator formulation	103		
	5.5	Uncoupling of anisotropy and dispersion	103		
	5.6	Diffraction-dispersion analogy	105		
	5.7	Diffraction-dispersion interaction	106		
	5.8	Space-time duality	109		
	5.9	Discussion	110		
	5.A	Appendix: Canonical operator algebra	111		
		5.A.1 Basic operator definitions	111		
		5.A.2 Notation of variables	111		
		5.A.3 Operator algebra	111		
	5.10	References	113		
6	Elements of Euclidean optics				
	Kur	T BERNARDO WOLF	115		
	6.1	Introduction	115		
	6.2	The bundle of rays in geometric optics	118		
	6.3	Lie operators on the Euclidean group	119		
	6.4	Generators of the Euclidean group	122		
	6.5	Coset spaces and rays	124		
	6.6	Euclidean group action on rays in geometric optics	126		
	6.7	The Euclidean algebra generators on rays	128		
	6.8	The coset space of wavefront optics	131		
	6.9	Helmholtz optics	133		
	6.10	The Hilbert space for Helmholtz optics	135		
	6.11	The Euclidean algebra generators			
		in Helmholtz optics —wavization	140		
	6.12	The ray direction sphere under Lorentz boost transforma-			
		tions	144		
	6.13	Relativistic coma in geometric optics	146		
		Relativistic coma in Helmholtz wave optics	149		
		Reflection, refraction, and concluding remarks	154		
		Acknowledgements	160		
		References	160		

7	The map between Heisenberg-Weyl and Euclidean optics				
	is comatic				
	VLA	dimir I. Man'ko and Kurt Bernardo Wolf	163		
	7.1	Introduction	163		
	7.2	From Snell's law to the Hamilton equations	165		
	7.3	The paraxial régime and Heisenberg-Weyl optics	168		
	7.4	The opening coma map	170		
	7.5	The map between Heisenberg-Weyl and Euclidean free rays	173		
	7.6	The symplectic group on Euclidean phase space	175		
	7.7	The Euclidean and Lorentz groups on Heisenberg-Weyl phase			
		space	178		
	7.8	Spherical aberration, coma, and point transformations in			
		phase space	183		
	7.9	The Hilbert spaces for Heisenberg-Weyl			
		and Euclidean optics	185		
	7.10	Plane waves and the coma kernel			
	7.11	Gaussians, non-diffracting beams, and concluding remarks.	192		
		Acknowledgements			
		References			