Contents

Part I	Optical Circuitry and Computing	
_	oility and the Digital Optical Computers	2
	ical Associative Memories (With 2 Figures)	4
Parallel All-O; By S.D. Smith	n of a Triple Bistable-Element Loop Circuit for a Digital ptical Computer n, A.C. Walker, F.A.P. Tooley, J.G.H. Mathew, hizadeh (With 2 Figures)	8
•	omputing Circuit and Component Designs rett (With 4 Figures)	12
Computers	vice Tolerance Requirements in Digital Optical c, R.T. Weverka, and D. Psaltis (With 4 Figures)	16
	trong Now	21
	Joint Optical Bistability Project and P. Mandel (With 1 Figure)	22
Optical Circui	try Cooperative (OCC). By H.M. Gibbs	26
	olarized Optical Bistability and A.W. Lohmann	28
Part II	Optical Logic Gates and Parallel Processing	
By J.L. Jewell	l Logic in GaAs Etalons l, Y.H. Lee, J.F. Duffy, A.C. Gossard, W. Wiegmann, ish (With 4 Figures)	32 VII

Cascaded Bistable Optical Devices Based on Two-Photon Absorption in Room Temperature InSb. By Wei Ji, A.K. Kar, U. Keller, J.G.H. Mathew, and A.C. Walker (With 3 Figures)	35
Fabrication and Characterization of Arrays of GaAs All-Optical Logic Gates. By M. Warren, Y.H. Lee, G.R. Olbright, B.P. McGinnis, H.M. Gibbs, N. Peyghambarian, T. Venkatesan, B. Wilkens, J. Smith, and A. Yariv (With 2 Figures)	39
An Ultrafast GaAs All-Optical Logic Gate. By A. Migus, D. Hulin, A. Mysyrowicz, A. Antonetti, N. Peyghambarian, H.M. Gibbs, W.T. Masselink, and H. Morkoç (With 4 Figures)	42
White Light Switching of Visible Nonlinear Interference Filters and Its Implications for the Design of a Spatial Light Modulator By M.R. Taghizadeh, F.A.P. Tooley, and J.G.H. Mathew (With 1 Figure)	45
Gain-Bandwidth Product of an InSb Transphasor By H.A. Al-Attar, W.J. Firth, H.A. MacKenzie, F.A.P. Tooley, and A.C. Walker (With 2 Figures)	49
Dynamic Gain of an Optical Transistor By P. Nardone and P. Mandel (With 1 Figure)	53
Observation and Analysis of Critical Slowing Down in Nonlinear Visible Interference Filters. By J.G.H. Mathew, M.R. Taghizadeh, E. Abraham, I. Janossy, and S.D. Smith (With 3 Figures)	57
Simultaneous Optical Bistable Switching of Adjacent Pixels on ZnS and ZnSe Interference Filters. By R. Jin. L. Wang, R.W. Sprague, H.M. Gibbs, G.C. Gigioli, H. Kulcke, H.A. Macleod, N. Peyghambarian, G.R. Olbright, and M. Warren (With 1 Figure)	61
Advances in Optoelectronics. By G.A. Mourou	64
Optical Limits to Parallel Processing in a Fabry-Perot Etalon By Pan-Sang Jung and E. Garmire (With 1 Figure)	65
Composite Logic Gate Element and Multiplexer for Optical Computing and Optical Communications	
By J.W. Haus, C.M. Bowden, and Chi C. Sung (With 2 Figures)	69
Part III Nonlinear Guided Waves	
Properties of Nonlinear Surface Waveguides. By A.D. Boardman, G.S. Cooper, P. Egan, and T. Twardowski (With 2 Figures)	74
Nonlinear Guided-Wave Phenomena By G.I. Stegeman and C.T. Scaton (With 3 Figures)	79

Bistable Optical Device Using Guided Mode Excitation in Silicon on Sapphire. By F. Pardo, A. Koster, H. Chelli, N. Paraire, and S. Laval (With 4 Figures)	83
Light-Induced-Desorption: A New Mechanism for Bistability in Integrated Optical Devices By W. Lukosz and V. Briguet (With 6 Figures)	87
Optical Wayeguides in Bulk and Multiple-Quantum-Well Structures By D. Sarid, W.M. Gibbons, H.M. Gibbs, M.E. Warren, S.W. Koch, and L. Banyai (With 3 Figures)	91
Intrinsic Optical Bistability in a Passive GaAlAs Waveguide By A.C. Walker, J.S. Aitchison, J.T. Chilwell, S.T.D. Ritchie, and P.M. Rodgers (With 2 Figures)	94
Stability and Instability of Nonlinear Standing Waves in Planar Optical Waveguides By C.K.R.T. Jones and J.V. Moloney (With 2 Figures)	98
Periodic Coupling in Dielectric/Semiconductor Guided-Wave Bistable Devices. By T.E. Batchman and R.F. Carson (With 3 Figures)	102
Nonlinear Waveguide Couplers By C. Sibilia and M. Bertolotti (With 3 Figures)	105
Bistability and Self-Pulsing Using Input Couplers on Nonlinear Planar Waveguides. By W. Lukosz, P. Pirani, and V. Briguet (With 8 Figures)	
Angle and Frequency Optical Bistability: Resonant Excitation of a Nonlinear Guided Mode By P. Arlot, E. Pic, R. Reinisch, and G. Vitrant (With 4 Figures)	113
Optical Bistability with Surface Plasmons Beyond Plane Waves in Nonlinear Dielectric By G.S. Agarwal and S.D. Gupta (With 3 Figures)	117
Part IV Optical Bistability and Nonlinearity in Semiconductor Other Materials	and
Fast All-Optical Switching at Extremely Low Switching Energy in CdS Platelets. By M. Dagenais and W.F. Sharfin (With 5 Figures)	122
Optical Nonlinearities of Glasses Doped with CdS_xSe_{1-x} By N. Peyghambarian and G.R. Olbright (With 2 Figures)	126
Optical Bistability in CdS and Related Materials By C. Klingshirn, M. Wegener, C. Dörnfeld, M. Lambsdorff, J.Y. Bigot, and F. Fidorra (With 3 Figures)	129

Pulse Shaping and Optical Bistability in CuCl Due to Nonlinear Dispersion and Absorption. By J.Y. Bigot, M. Frindi, M. Wegener. B. Honerlage, R. Levy, and J.B. Grun (With 5 Figures)	132
Bulk ZnSe: Linear Transmission to Damage Through Dispersive Bistability and Absorptive Switching By A.K. Kar and B.S. Wherrett (With 4 Figures)	136
Room-Temperature Optical Nonlinearities and Bistability in CdHgTe and CdTe. By A. Miller, D. Craig, and G. Steward (With 3 Figures).	140
Optical Bistability in PbSnSe at Room-Temperature with Infrared Radiation at Milliwatt Powers. By A.K. Kar, H.A. MacKenzie, Wei Ji, J.J.E. Reid, R. Grisar, D. Ball, and H.M. Preier (With 4 Figures)	144
Liquid Crystals as Nonlinear Optical Materials By Y.R. Shen (With 3 Figures)	148
The Photorefractive Effect for Optical Processing. By A.M. Glass	152
Large Third Order Nonlinear Optical Susceptibilities in Organic Materials. By G.M. Carter, Y.J. Chen, M.K. Thakur. J.V. Hryniewicz, and S.E. Meyler (With 1 Figure)	153
Room-Temperature Optical Nonlinearity of Wide-Gap II-VI Compounds By F. Henneberger, J. Puls, and Ch. Spiegelberg (With 4 Figures)	156
Laser-Induced Distortion of Nematic Liquid Crystal Films and Observation of Cavityless Optical Bistability Due to Thermal Effects By I. Janossy, M.R. Taghizadeh, and E. Abraham (With 4 Figures)	160
Optical Nonlinearity and Resonant Bistability in Organic Photochromic Thin Films By C.J.G. Kirkby, R. Cush, and I. Bennion (With 4 Figures)	165
Polarization Instability and Bistability in Birefringent Nonlinear Media. By H.G. Winful (With 3 Figures)	169
Optical Bistability in 1.55µm Semiconductor Laser Amplifiers By M.J. Adams, H.J. Westlake, and M.J. O'Mahony (With 2 Figures).	173
Nonlinear Semiconductor Laser Amplifiers as Low-Energy Optical Switches. By W.F. Sharfin and M. Dagenais (With 2 Figures)	177
Models for Absorption-Induced Optical Bistability in CdS and Multiple Quantum Well GaAs. By J.W. Haus, C.C. Sung, Y.C. Li, C.M. Bowden, and J.M. Cook (With 4 Figures)	181

Part V Transverse and Longitudinal Effects	
Longitudinal Effects in Increasing Absorption Optical Bistability By G.R. Olbright, H.M. Gibbs, N. Peyghambarian, H.E. Schmidt, S.W. Koch, and H. Haug (With 2 Figures)	186
Measurement of Transverse Coupling Between Adjacent InSb Optical Switching Elements. By D.J. Hagan, I. Galbraith, H.A. MacKenzie, W.J. Firth, A.C. Walker, J. Young, and S.D. Smith (With 2 Figures)	
Diffusion Effects in Bistable Optical Arrays By W.J. Firth, I. Galbraith, and E.M. Wright (With 3 Figures)	193
Cross-Trapping Optical Bistability of Two Counter-Propagating Beams in Sodium Vapor. By A. Mysyrowicz, K. Tai, H.M. Gibbs, and N. Peyghambarian (With 2 Figures)	197
Part VI Fundamental Aspects and New Schemes	
Noise Effects in Dispersive Optical Bistability. By L.A. Lugiato, A. Colombo, G. Broggi, and R.J. Horowicz (With 2 Figures)	202
Effects of Holding-Field Noise on Optical Switching. By P. Filipow J.C. Garrison, P. Meystre, and E.M. Wright (With 2 Figures)	•
Theory of Transient Optical Bimodality By G. Broggi, L.A. Lugiato, and A. Colombo (With 3 Figures)	209
Experimental Studies of Fluctuations in Transient Optical Bistability. By W. Lange, R. Deserno, F. Mitschke, and J. Mlynek (With 5 Figures)	213
Quantum Statistics of Small Bistable Systems By H.J. Carmichael (With 2 Figures)	217
Control of σ^+ Beam Propagation by a σ^- Beam By A.W. McCord and R.J. Ballagh (With 2 Figures)	223
Magnetic Control of Polarization Switching By R.J. Ballagh and C. Parigger (With 2 Figures)	227
Optical Bistability Experiments Using Samarium Vapor By W.J. Sandle and C. Parigger (With 3 Figures)	231
Quantum "Optical" Bistability with Rydberg Na Atoms By R.K. Bullough, S.S. Hassan, G.P. Hildred, and R.R. Puri (With 3 Figures)	235
Multiphoton Excitation of Relativistic Cyclotron Resonance and Phase Bistability. By A.E. Kaplan	240

A Heuristic Stochastic Model of Mirrorless Optical Bistability By F.A. Hopf and C.M. Bowden (With 2 Figures)	244	
Optical Constants of Multiple Quantum Well Structures By S.A. Shakir, R.R. Bousek, and W. Streifer (With 4 Figures)		
Bistability in Intracavity Resonant Degenerate 4-Wave Mixing in Na Vapor. By W. Lange, E. Köster, and J. Mlynek (With 6 Figures)		
Width of OB Switching Time Distribution By E. Arimondo, C. Gabbanini, A. Gozzini, I. Longo, F. Maccarrone, F. Mango, and E. Menchi (With 3 Figures)		
Ring Pattern of Laser-Induced Thermal Self-Defocusing By Chun-fei Li and Ping Zhou (With 4 Figures)		
Optical Bistability in Two-Beam Interferometric Devices with In- Phase Outputs By G. Orriols, C. Schmidt-Iglesias, and F. Pi (With 5 Figures)	265	
Optical Multistability in a Four-Level System Interacting with Two Fields. By D. Kagan and H. Friedmann (With 8 Figures)	270	
Generation of Squeezed States in Optical Bistability By D.A. Holm, M. Sargent III, and B.A. Capron (With 3 Figures)	274	
Bistability by Reflection at the Boundary of a Saturable Absorber By L. Roso-Franco (With 2 Figures)	277	
Part VII Instability and Chaos		
Ergodic Theory of Chaos. By D. Ruelle	282	
Instabilities in Dispersive OB on the Low Transmission Branch By T. Erneux and P. Mandel (With 2 Figures)	283	
Measurement of Dimension of Chaos in Optical Bistability By M.W. Derstine, F.A. Hopf, D.L. Kaplan, and M.H. Rose (With 2 Figures)	287	
Quasiperiodic Route to Chaos in Self-Pulsing Semiconductor Lasers Under Large Signal Current Modulation By Y.C. Chen, H.G. Winful, and J.M. Liu (With 2 Figures)	290	
Optical Bistability and Instabilities Due to Mode-Mode Competition in a Homogeneously Broadened Ring Laser By L.A. Lugiato, D.K. Bandy, L.M. Narducci, J.R. Tredicce, H. Sadiky, and N.B. Abraham (With 5 Figures)	2 93	
Instabilities in a Self-Pumped Barium Titanate Phase Conjugate Mirror. By P. Narum, D.J. Gauthier, and R.W. Boyd (With 2 Figures)	298	

Counterpropagating Waves in a Nonlinear Kerr Medium By A.L. Gaeta, R.W. Boyd, P.W. Milonni, and J.R. Ackerhalt (With 3 Figures)	302
Influence of Cavity Properties on the Interpretation of Experimental Results in Bistability By A.T. Rosenberger, L.A. Orozco, R.J. Brecha, and H.J. Kimble	306
Optical Bistability with Two-State Atoms: Steady States and Dynamical Instabilities. By L.A. Orozco, M.G. Raizen, A.T. Rosenberger, and H.J. Kimble (With 6 Figures)	307
Characterization of a Strange Attractor in an Optical System By J.R. Tredicce, F.T. Arecchi, W. Gadomski, A. Poggi, and G.P. Puccioni (With 2 Figures)	311
Coherence and Chaos in Passive Nonlinear Optical Systems By D.W. McLaughlin, A.C. Newell, and J.V. Moloney (With 2 Figures)	314
Period Doubling and Intermittency in the Transmission of a Na Vapor-Filled Fabry-Perot. By S. Cecchi, G. Giusfredi, P. Salieri, and F.T. Arecchi (With 4 Figures)	319
Instability Condition and Frequency-Locking in Hybrid Optical Bistability By Li-xue Chen, Chun-fei Li, and Jing Hong (With 2 Figures)	323
Transverse Optical Bistability and Instabilities By J.F. Valley, H.M. Gibbs, M.W. Derstine, R. Pon, K. Tai, M. Le Berre, E. Ressayre, and A. Tallet (With 2 Figures)	327
Instabilities of a Semiconductor with Induced Absorption in a Ring Resonator By M. Lindberg, S.W. Koch, and H. Haug (With 4 Figures)	331
Optical Multistability and Oscillations in Hybrid Optical Bistable Systems with Short Delay Times By M.A. Muriel and J.A. Martín-Pereda (With 6 Figures)	335
Poincaré Analysis of a Hybrid Bistable Device By R. Vallée and C. Delisle (With 2 Figures)	339
Dual-Phase Oscillation from CW Transverse Instabilities in Sodium Vapor. By M.W. Derstine, H.M. Gibbs, F.A. Hopf, and J.F. Valley (With 3 Figures)	342
Multimode Instabilities of Homogeneously Broadened Lasers By S. Chakmakjian, L.W. Hillman, K. Koch, and C.R. Stroud, Jr. (With 5 Figures)	345

Instabilities in a CO ₂ Laser with Feedback on Intracavity E-O	
Modulator. By W. Gadomski, P. Salieri, F.T. Arecchi, R. Meucci, and G. Delfino (With 7 Figures)	348
Stability of a 2-Photon Bistable System in a Standing Wave Cavity By S. Maize, B.V. Thompson, and S.S. Hassan (With 1 Figure)	352
Frequency Pushing and Frequency Hysteresis of Single-Mode, Standing-Wave Gas Lasers. By J.C. Englund (With 3 Figures)	356
Analytical Solutions and Intrinsic Instabilities for the Polarization in Nonlinear Isotropic and Anisotropic Optical Media	359
By G. Gregori and S. Wabnitz (With 4 Figures)	
Index of Contributors	363