Contents

1.	Intr	oduction. By M. Capitelli	1				
	1.1	Nonequilibrium Versus Equilibrium Vibrational Kinetics	1				
	1.2	Organization of This Book	2				
2.	Vibrational Kinetics, Dissociation, and Ionization of Diatomic Molecules						
	Under Nonequilibrium Conditions. By M. Cacciatore, M. Capitelli,						
	S. De Benedictis, M. Dilonardo, and C. Gorse (With 34 Figures)						
	2.1	Laser-Induced Vibrational Kinetics	6				
		2.1.1 General Characteristics	6				
		2.1.2 Case Studies: Heteronuclear Diatomic Molecules	8				
		2.1.3 Homonuclear Diatomic Species	18				
	2.2	Nonequilibrium Vibrational Kinetics Under Electrical Discharges	20				
		2.2.1 General Considerations	20				
		2.2.2 Case Studies	22				
		a) Nitrogen	22				
		b) Hydrogen	29				
		c) Carbon Monoxide	33				
	2.3	.3 Post-Discharge Conditions4					
	2.4	2.4 Summary					
	Refe	rences	45				
3.	Analytical Theory of Vibrational Kinetics of Anharmonic Oscillators						
	Ву В	.F. Gordiets and S. Zhdanok (With 2 Figures)	47				
	3.1	Historical Overview	47				
	3.2	Rate Equations and Probabilities of Elementary Processes	48				
	3.3	V-T Relaxation in an Inert Gas	51				
	3.4	Treanor Distribution in the V-V Exchange	52				
	3.5	V-V and V-T Exchange. Weak Excitation Regime	54				
	3.6	Resonance V-V Relaxation Under High-Excitation Conditions.					
		Steady-State Conditions	56				
	3.7	Relaxation at Moderate Excitation of Vibrations	62				
	3.8	Non-Steady-State Relaxation Regime at High Excitation	6 3				

VII

	3.9	Vibrat	ional Kinetics and Chemical Reactions Involving Vibrationally	
		Excite	d Molecules	65
	3.10	Laser	Emission Excitation of Molecular Vibrations	70
	3.11	Vibrat	ional Relaxation Under Adiabatic Expansion	
		in the	Supersonic Nozzle	75
	3.12	Furthe	r Studies and Outlook	81
	Refe	rences		82
ŧ.	Vibr	ation-V	ibration and Vibration-Translation Energy Transfer,	
	Incl	uding M	Multiquantum Transitions in Atom-Diatom and	
	Diat	om-Diat	om Collisions. By G.D. Billing	85
	4.1	First-	Order Theories	86
	4.2	Scalin	g Theories	91
	4.3	Semic1	assical Theories	94
	4.4	Analyt	ical Expressions for V-V and V-T Rate Constants	97
	4.5	Energy	Transfer in Specific Systems	98
		4.5.1	V-T Processes in the He + CO and CO + CO Systems	98
		4.5.2	V-V Processes in CO + CO and CO + N_2	100
	4.A	Append	ix: Tables of Energy Transfer Rates in the $H_2 + H_2$, $N_2 + N_2$,	
		He + C	O, and CO + CO Systems	103
	Refe	rences		111
5 .	Vibr	ational	Energy Transfer in Collisions Involving Free Radicals	
	Ву І	.w.m. s	mith (With 6 Figures)	113
	5.1	Mechan	isms for Vibrational Relaxation	116
		5.1.1	Collisions Between Species with Closed Electronic Shells	116
		5.1.2	Electronically Nonadiabatic Mechanisms for	
			Vibrational Relaxation	121
		5.1.3	Vibrational Relaxation as the Result of Chemical Interaction	124
		5.1.4	Summary of Vibrational Relaxation Mechanisms	133
	5.2	Experi	mental Results and Discussion	134
		5.2.1	Collisions Between Free Radicals and Noble Gas Atoms	134
		5.2.2	Collisions Between Saturated Molecules in Singlet States and	
			Radical Atoms	136
			a) The H ₃ System	137
			b) The H + HX (X = F, C1) Systems	139
			c) The X, Y + HX (X = F, C1, Br; Y = C1, Br, 0) Systems	141
		5.2.3	Collisions Between Unsaturated Molecules in Singlet States and	
			Radical Atoms	147
		521	Collisions Retween Molecules and Molecular Free Radicals	149

		5.2.5 Collisions Between Free Radicals	150
	5.3	Conclusion and Prognosis	153
	Refe	rences	154
ŝ.	Dyn	amics of Reactions Involving Vibrationally Excited Molecules	
	Ву V	. Aquilanti and A. Laganà (With 8 Figures)	159
		Experimental and Computational Results for Representative	
		Atom-Diatom Reactions	160
		6.1.1 Reactions of Atoms with Hydrogen Molecules and	
		Isotopic Variants	161
		a) The Reaction H + H ₂	161
		b) The Reaction F + H ₂	164
		c) Reactions of Other Atoms with H ₂	165
		6.1.2 Reactions of Atoms with Hydrogen Halides	166
		6.1.3 Reactions of Atoms with Halogen and Interhalogen Molecules	169
		6.1.4 Reactions of Atoms with Oxygen Molecules	171
		6.1.5 Reactions Involving Other Diatomic Molecules and Ions	171
	6.2	Theoretical Outlook	173
		6.2.1 Coordinates for Rearrangement Processes	173
		6.2.2 Decoupling Schemes for Rotations: Sudden Approximations	175
		6.2.3 Hyperspherical Adiabatic Approach: Kinematic Effects for	
		Vibrational Energy Exchange	177
		Conclusions	182
	Refe	rences	182
7.	Vibr	ational Excitation and Dissociative Attachment	
	Ву Ј	.M. Wadehra (With 14 Figures)	191
	7.1	The Resonance Model	192
		7.1.1 Qualitative Remarks	192
		7.1.2 Quantitative Discussion	195
		7.1.3 Cross Section for Dissociative Attachment	199
		7.1.4 Cross Section for Vibrational Excitation	200
		7.1.5 Semiclassical Approximation	202
	7.2	Applications to Specific Molecules	203
		7.2.1 Molecular Hydrogen	204
		a) Resonances	204
		b) Vibrational Excitation	207
		c) Dissociative Attachment	209
		d) Isotope Effect	212

				212
		7.2.2	Molecular Nitrogen	212
			a) Resonances	212
			b) Vibrational Excitation	215
			c) "Dissociative Attachment"	217
		7.2.3	Carbon Monoxide	218
			a) Resonances	218
			b) Vibrational Excitation	219
			c) Dissociative Attachment	220
		7.2.4	Hydrogen Chloride	222
			a) Resonances	222
			b) Vibrational Excitation	223
			c) Dissociative Attachment	225
	7.3	Applic	ations of the Attachment Process Under Nonequilibrium	
		Condit		226
		7.3.1	Neutral Beam Injection in Fusion Plasma	227
		7.3.2	Electron-Beam Switches	227
			Laser Plasma Instabilities	228
		7.3.4	Gaseous Dielectrics	228
		• •	ix: Normalization of Continuum Functions	228
	Refe	rences		230
8.			Distribution and Rate Constants for Vibrational	
	Ene	rgy Tra	ansfer. By Ph. Bréchignac and JP.E. Taran (With 30 Figures) .	233
	8.1	Vibrat	ional Distribution	233
		8.1.1	The Vibrationally Excited Medium	234
		8.1.2	Infrared Techniques	235
		3.212	a) Infrared Spontaneous Emission	235
			b) Probe Laser Technique	236
			c) Typical Results	239
			d) Conclusion	244
		Ω 1 3	Light-Scattering Techniques	245
		0.1.5	a) Spontaneous Raman Scattering-Fluorescence	245
			b) Coherent Anti-Stokes Raman Scattering	249
			c) Summary	258
		8.1.4	•	259
		0.1.4		
			a) Multiphoton Ionization	259
			b) Velocity-Modulated Infrared Laser Spectroscopy	259

	8.2	Rate C	onstants for Vibrational Energy Transfer	259
		8.2.1	Steady-State Measurements	260
		8.2.2	Time-Resolved Measurements	261
			a) Laser-Induced Infrared Fluorescence	261
			b) Two-Laser Experiments	264
			c) Other Time-Resolved Techniques	266
	Refe	rences		266
9.	Isoto	pe Sep	aration by Vibration-Vibration Pumping	
			h and R.C. Bergman (With 11 Figures)	271
	9.1	Kineti	c Modeling	272
	9.2	Experi	mental Studies	277
		9.2.1	Carbon Monoxide	277
			a) Optical Excitation	278
			b) Glow Discharge Excitation	283
		9.2.2	Nitrogen/Oxygen Mixtures	286
	9.3	V-V Pu	mping as an Alternative Method of Stable Isotope Preparation $$.	288
	Refe	rences		292
10.			Kinetics and Reactions of Polyatomic Molecules in ium Systems. By V.D. Rusanov, A.A. Fridman, and G.V. Sholin .	295
	10.1	Elemen	tary Process of V-T Relaxation of Highly Excited	
		Polyat	omic Molecules	296
	10.2	Elemen	tary Process of V-V Exchange of Highly Excited	
		Polyat	omic Molecules	299
	10.3	Popula	tion of Vibrationally Excited States of Polyatomic Molecules	
		in Non	equilibrium Conditions	301
	10.4	Reacti	ons of Polyatomic Molecules Under Essentially	
		Nonequ	illibrium Conditions	305
		10.4.1	Fast Reactions	307
		10.4.2	Slow Reactions	307
	10.5	CO ₂ Di	ssociation Stimulated by Vibrational Excitation of	
		Molecu	lles in Plasma	308
		10.5.1	Single-Temperature Approximation	310
		10.5.2	? Two-Temperature Approximation	310
	10.6	Summar	.у	312
	Bo£6	roncoc		312

1.	Coupling of Vibrational and Electronic Energy Distributions in Discharge	
	and Post-Discharge Conditions	
	By M. Capitelli, C. Gorse, and A. Ricard (With 15 Figures)	315
	11.1 Coupling Between N _v and the Free-Electron Energy	
	Distribution Function	316
	11.1.1 Electrical Discharges	316
	11.1.2 Post-Discharge Conditions	
	11.2 Coupling Between N_v and N_v^*	330
	11.3 Conclusions	335
	References	336
٩d	ditional References with Titles	339
Sul	hiect Index	341