Contents

1.	Gas	Ioniza	tion by Charged Particles and by Laser Rays.		
	1.1		onization by Fast Charged Particles		
		1.1.1	Ionizing Collisions		
		1.1.2	Different Ionization Mechanisms		
		1.1.3	Average Energy Required to Produce One		
			Ion Pair		
		1.1.4	The Range of Primary Electrons		
		1.1.5	The Differential Cross-Section $d\sigma/dE$		
	1.2	Calcu	lation of Energy Loss		
		1.2.1	Force on a Charge Travelling through		
			a Polarizable Medium		
		1.2.2	The Photo-Absorption Ionization Model		
		1.2.3	Behaviour for Large E		
		1.2.4	Cluster-Size Distribution		
		1.2.5	Ionization Distribution on a Given Track		
			Length		
		1.2.6	Velocity Dependence of the Energy Loss		
		1.2.7	The Bethe-Bloch Formula		
		1.2.8	Energy Deposited on a Track - Restricted		
			Energy Loss		
		1.2.9	Localization of Charge Along the Track		
		1.2.10	A Measurement of N_{eff}		
	1.3 Gas Ionization by Laser Rays				
		1.3.1	The nth Order Cross-Section Equivalent		
		1.3.2	Rate Equations for Two-Photon Ionization.		
		1.3.3	Dependence of Laser Ionization		
			on Wavelength		
		1.3.4	Laser-Beam Optics		
	Refe	rences			
2.			of Electrons and Ions in Gases		
	2.1		quation of Motion with Friction		
		2.1.1			
		2.1.2			
	2.2		Aicroscopic Picture		
		2.2.1	Drift of Electrons		

	2.2.2	Drift of Ions	57
	2.2.3	Inclusion of Magnetic Field	65
	2.2.4	Diffusion	69
	2.2.5	Electric Anisotropy	72
	2.2.6	Magnetic Anisotropy	74
	2.2.7	Electron Attachment	77
2.3	Resul	ts from the Complete Microscopic Theory	81
	2.3.1	Distribution Function of Velocities	8
	2.3.2	Drift	83
	2.3.3	Inclusion of Magnetic Field	8.
	2.3.4	Diffusion	8:
2.4		cations	8:
- . ·	2.4.1	Determination of $\sigma(\varepsilon)$ and $\lambda(\varepsilon)$ from Drift	
	2	Measurement	8:
	2.4.2	Example: Argon-Methane Mixture	8
	2.4.3	Experimental Check of the Universal Drift	
	2	Velocity for Large ωτ	8
	2.4.4	A Measurement of Track Displacement	
	2	as a Function of Magnetic Field	9
	2.4.5	A Measurement of the Magnetic Anisotropy	
	2	of Diffusion.	9
	2.4.6	Calculated and Measured Electron	
		Drift Velocities in Crossed Electric	
		and Magnetic Fields	9
Ref	erences	S	9
3. Ele	ctrosta	tics of Wire Grids and Field Cages	9
3.1	Wire	Grids	10
	3.1.1	The Electric Field of an Ideal Grid	
		of Wires Parallel to a Conducting Plane	10
	3.1.2	Superposition of the Electric Fields	
		of Several Grids and of a High-Voltage	
		Plane	10
	3.1.3		
		and of the Electrodes of the Field Cage	10
3.2	An I	on Gate in the Drift Space	10
-	3.2.1	Calculation of Transparency	10
	3.2.2	Setting the Gating Grid Potential	
		with Respect to the Zero-Grid Potential	11
3.3	Field	1 Cages	11
	3.3.1		11
	3.3.2		11
3.4		Displacements Due to Gravitational	
		Electrostatic Forces	1 1
		Gravitational Force	12

			Contents	XI
		3.4.2	Electrostatic Forces	121
	Refe			122
				122
4.	Amı	olificatio	on of Ionization	124
	4.1		roportional Wire	124
	4.2	Beyon	d the Proportional Mode	127
	4.3	Latera	d Extent of the Avalanche	129
	4.4	Ampli	fication Factor (Gain) of the Proportional	
		Wire.		131
		4.4.1	The Diethorn Formula	133
		4.4.2	Dependence of the Gain on the Gas	
			Density	135
		4.4.3	Measurement of the Gain Variation	
			with Sense-Wire Voltage and Gas Pressure.	136
	4.5	Local	Variations of the Gain	137
	•••	4.5.1	Variation of the Gain Near the Edge	15,
		4.5.1	of the Chamber	138
		4.5.2	Local Variation of the Gain Owing to	150
		7.5.2	Mechanical Imperfections	138
		4.5.3	Space Charge Near the Wire	141
	4.6		ical Fluctuation of the Gain	143
	4.0	4.6.1	Distributions of Avalanches Started	143
		4.0.1		144
		463	by Single Electrons (Theory)	144
		4.6.2	Distributions of Avalanches Started	1.40
		4.63	by Single Electrons (Measurements)	148
		4.6.3	The Effect of Avalanche Fluctuations	1 10
			on the Wire Pulse Heights	149
		4.6.4	A Measurement of Avalanche Fluctuations	
			Using Laser Tracks	151
	Refe	rences.		152
5.	Стея	tion of	the Signal	155
	5.1	Signal	Generation on the Wire	155
	5.2	Signal	Generation on Cathode Strips	158
		5.2.1	Pad Response Function	159
		5.2.2	Principle of the Measurement of the	100
		J. L .2	Coordinate along the Wire Direction Using	
			Cathode Strips	163
	5.3	Dama'	's Theorem	164
				166
	Keie	i ences.		100
6.	Cool	rdinate	Measurement and Fundamental Limits	
	of A			167
	6.1	Metho	ds of Coordinate Measurement	167

6.2			169
	6.2.1	Frequency Distribution of the Coordinates	
		of a Single Electron at the Entrance	170
		to the whe region	170
	6.2.2	Frequency Distribution of the Arrival Time	
		of a Single Electron at the Entrance	. 72
		to the wife region	172
	6.2.3	Influence of the Cluster Fluctuations	
		on the Resolution - the Effective Number	172
		Of Electrons.	173
6.3	Accur	acy in the Measurement of the Coordinate	177
		near the Wire Direction	177
	6.3.1	Inclusion of a Magnetic Field Perpendicular	
		to the Wire Direction: the Wire $E \times B$ Effect	177
	6.3.2	Case Study of the Explicit Dependence	
		of the Resolution on L and θ	179
	6.3.3	The General Situation - Contributions	
		of Several Wires, and the Angular Pad	. = 0
		Effect	179
	6.3.4	Consequences of (6.34) for the Construction	404
		of TPCs	184
	6.3.5	A Measurement of the Angular Variation	
		of the Accuracy	184
6.4	Accu	racy in the Measurement of the Coordinate	
	in the	Drift Direction	186
	6.4.1	Inclusion of a Magnetic Field Parallel	=
		to the Wire Direction: the Drift $\mathbf{E} \times \mathbf{B}$ Effect	187
	6.4.2		188
	6.4.3		189
	6.4.4	Variance of the Arrival Time of the Mth	
		Electron: Contribution of the Drift-Path	
		Variations	190
	6.4.5	Variance of the Arrival Time of the Mth	
		Electron: Contribution of the Diffusion	191
Apı	pendix.	Influence of the Cluster Fluctuations	
		ne Measurement Accuracy of a Single Wire	194
Ref	erences	S	200
7. Ge		cal Track Parameters and Their Errors	201
7.1		ar Fit	202
	7.1.1		203
7.2	-	dratic Fit	204
	7.2.1		205
	7.2.2	· ·	
		Smaring of Wires	20/

	Conten	ILS
	7.2.3 Sagitta	
	7.2.4 Covariance Matrix at an Arbitrary Point	
	Along the Track	
	7.2.5 Comparison Between the Linear	
	and Quadratic Fits in Special Cases	
	7.2.6 Optimal Spacing of Wires	
7.3	A Chamber and One Additional Measuring Poi	nt
	Outside	
	7.3.1 Comparison of the Accuracy	
	in the Curvature Measurement	
	7.3.2 Extrapolation to a Vertex	
7.4	Limitations Due to Multiple Scattering	
	7.4.1 Basic Formulae	
	7.4.2 Vertex Determination	
	7.4.3 Resolution of Curvature for Tracks	
	Through a Scattering Medium	
7.5	Spectrometer Resolution	
	7.5.1 Limit of Measurement Errors	
	7.5.2 Limit of Multiple Scattering	
Refe	erences	
lon	Gates	
8.1	Reasons for the Use of Ion Gates	
	8.1.1 Electric Charge in the Drift Region	
	8.1.2 Ageing	
8.2	Survey of Field Configurations and Trigger	
	Modes	
	8.2.1 Three Field Configurations	
	8.2.2 Three Trigger Modes	
8.3	Transparency under Various Operating Condition	
	8.3.1 Transparency of the Static Bipolar Gate.	
	8.3.2 Average Transparency of the Regularly	
	Pulsed Bipolar Gate	
	8.3.3 Transparency of the Static Bipolar Gate	
	in a Transverse Magnetic Field	
Refe	erences	
Par	ticle Identification by Measurement of Ionization.	
9.1	Principles	
9.2	Shape of the Ionization Curve	
9.3	Statistical Treatment of <i>n</i> Ionization Samples	• •
7.3	of One Track	
9.4	Accuracy of the Ionization Measurement	
<i>7.</i> ₹	9.4.1 Variation with n and x	٠.
	7.7.1 Valiation with a allu A	

		9.4.2 Variation with the Particle Velocity	249	
		9.4.3 Variation with the Gas	250	
	9.5	Particle Separation	253	
	9.6	Cluster Counting	255	
	9.7	Ionization Measurement in Practice	256	
9.1		9.7.1 Track-Independent Corrections		
		9.7.2 Track-Dependent Corrections	257	
	0.0	Performance Achieved in Existing Detectors	259	
	9.8	9.8.1 Wire Chambers Specialized to Measure		
		Track Ionization.	259	
		9.8.2 Ionization Measurement in Universal		
		Detectors	264	
	D . C	erences	268	
	Kei	erences	200	
10.	Exi	sting Drift Chambers - An Overview	270	
	10.1			
		of Drift Chambers	270	
	10.2		271	
	10.3			
		Experiments	274	
		10.3.1 General Considerations Concerning		
		the Directions of Wires and Magnetic		
		Fields	275	
		10.3.2 The Dilemma of the Lorentz Angle	276	
		10.3.3 Left-Right Ambiguity	277	
	10.4	- 10 01 1 00 1	278	
		10.4.1 Coordinate Measurement in the Wire		
	•	Direction	278	
		10.4.2 Five Representative Chambers	278	
		10.4.3 Type 1 Chambers without Field-Shaping		
		Electrodes	285	
	10.		287	
	10.	10.5.1 Coordinate Measurement along the Axis -		
		Stereo Chambers	287	
		10.5.2 Five Representativve Chambers		
		with (Approximately) Axial Wires	287	
		10.5.3 Drift Cells	288	
		10.5.4 The UA1 Central Drift Chamber	294	
	10.			
	10.	for Colliders (Vertex Chambers)	296	
		10.6.1 Six Representative Chambers	297	
	10		304	
	10.		305	
			305	
		10.7.2 Five Representative TPCs	202	

		Contents	ΧV
	10.7.3	A Type 3 Chamber with a Radial Drift	
		Field	310
	10.7.4	A TPC for Heavy-Ion Experiments	310
	10.7.5	A Type 3 Chamber as External Particle	
		Identifier	311
	10.7.6	A TPC for Muon-Decay Measurements.	313
10.8		bers with Extreme Accuracy	314
Refer	ences		316
11. Drift	-Chamb	er Gases	320
11.1	Genera	al Considerations Concerning the Choice	
	of Drif	ft-Chamber Gases	320
11.2	Inflam	mable Gas Mixtures	321
11.3	Gas P	urity, and Some Practical Measurements	
	of Elec	etron Attachment	326
	11.3.1	Three-Body Attachment to O ₂ , Mediated	
		by CH_4 , i- C_4H_{10} and H_2O	326
	11.3.2	'Poisoning' of the Gas by Construction	
		Materials	328
	11.3.3	The Effect of Minor H ₂ O Contamination	
		on the Drift Velocity	330
11.4		cal Compounds Used for Laser Ionization.	331
11.5	Choice	of the Gas Pressure	333
	11.5.1	Point-Measuring Accuracy	333
	11.5.2	Lorentz Angle	335
	11.5.3	Drift-Field Distortions from Space	
		Charge	335
11.6		oration of Chamber Performance	
	with U	sage ('Ageing')	336
	11.6.1	General Observations in Particle	
		Experiments	336
	11.6.2	Dark Currents	338
	11.6.3	Ageing Tests	340
Refer	ences		342
CL* *			245
Sudject li	naex		345