

Contents

Part I Computational Methods in Classical Physics

By J. G. Zabolitzky

Introduction	3
1 Motion of a Classical Point-Like Particle	5
2 Short Course in FORTRAN Programming Methodology	15
3 Methods of Higher Accuracy (and Efficiency)	19
4 Finding Extremal Points of Motion	37
5 Statics and Dynamics of Strings	51
6 Dynamics of Strings	59
7 Literature	65

Part II Monte Carlo Simulations in Statistical Physics

By D. Stauffer

Introduction	69
1 Random Numbers	73
2 Ising Model	79
3 Cellular Automata (Q2R and Creutz)	85
4 Diffusion and Percolation	91
5 Eden Clusters	95
6 Kauffman Model	99
7 Summary	103
8 Appendix: A Short Introduction to FORTRAN	105
9 Literature	109

Part III Principles of Vector and Parallel Computing

By N. Ito and D. Stauffer

1	Basic Idea	113
2	An Example – Q2R	117
3	More About Vector Processing	127
3.1	IF-Statement	127
3.2	Initial Cost for the Vector-Processing	130
3.3	Bank Conflict	131
3.4	Library Routines	134
4	Before and After the Vectorization	137
5	Parallel Computing	139
5.1	Basic Ideas	139
5.2	Types of Parallel Computers and Algorithms	140

**Part IV REDUCE for Beginners – Seven Lectures
on the Application of Computer-Algebra (CA)**

By V. Winkelmann and F. W. Hehl

Introduction	147	
First Lecture	151	
1.1	A First Interactive Reduce Session	151
1.2	What Can CA Do for You?	154
1.3	The Reduce Character Set	156
1.4	Integers, Rational and Real Numbers	157
1.5	Variables Named by Identifiers	158
1.6	A Reduce Program, a Follow-up of Commands	159
1.7	Assigning Values to Variables	160
1.8	Access to Previous Input and Output	161
1.9	Homework	162
Second Lecture	163	
2.1	Built-in Operators	163
2.2	Reduce Expressions	165
2.3	The Process of Evaluation in Reduce	167
2.4	Repeatedly Doing Something: Loops	169
2.5	Loops and Lists	171

2.6 Multidimensional Objects: Arrays	172
2.7 Homework	175
Third Lecture	177
3.1 The Conditional Statement	177
3.2 Combining Several Statements: I. The Group Statement	178
3.3 Combining Several Statements: II. The Compound Statement	179
3.4 Some Elementary Mathematical Functions	182
3.5 Differentiation with DF	182
3.6 Integration with INT	184
3.7 Substitution with SUB and Rule Lists	185
3.8 Homework	186
Fourth Lecture	187
4.1 Operators That Act on Lists	187
4.2 Right- and Left-hand-side of an Equation	188
4.3 Solving (Non-)linear Equations	189
4.4 Retrieving Parts of Polynomials and Rational Functions	190
4.5 To Make Decisions with Boolean Operators	192
4.6 Writing Messages	192
4.7 How to Define Your Own Operators	193
4.8 Rule Lists and the LET-statement	194
4.9 Homework	197
Fifth Lecture	199
5.1 Activate and Deactivate Rule Lists	199
5.2 More About Rule Lists	200
5.3 Examples: Factorials and Binomial Coefficients	200
5.4 Deactivating User-defined Rules	204
5.5 Non-commutative Algebras, Symmetric and Antisymmetric Operators	206
5.6 Procedures for Repeated Use of Commands	207
5.7 A Procedure for l'Hospital's Rule and a Caveat	209
5.8 Homework	211
Sixth Lecture	213
6.1 Linear Algebra Package: Matrices	213
6.2 Turning Switches On and Off	217
6.3 Reordering Expressions	220
6.4 On Reduce Input and Output	221

6.5 Generating Fortran Programs	224
6.6 Concluding Remarks	224
6.7 Homework	225
Seventh Lecture	227
7.1 Vector and Tensor Calculus	227
7.2 Packages for Three-dimensional Vector Calculus	229
7.3 Tensor Analysis, Christoffel Symbols, General Relativity	233
7.4 The EXCALC Package for Exterior Differential Forms	242
7.5 Graphics with GNUPLOT	246
7.6 Homework	253
A Some Additional Exercises	257
B Changes From Reduce 3.3 to Reduce 3.4.1	265
C Further Information on Reduce	269
C.1 Where Can You Buy Reduce?	270
C.2 Execution Times for the Reduce Standard Test	273
D Literature	275
<hr/> Joint Index <hr/>	281