Contents

1. Introduction	1
PART ONE — THEORETICAL CONCEPTS	13
2. Linear-Quadratic Control Problems	15
2.1 Introduction	15
2.2 Recursive Methods for Singularly Perturbed Linear Continuous Systems	16
2.2.1 Parallel Algorithm for Solving Algebraic Lyapunov Equation	17
2.2.2 Parallel Algorithm for Solving Algebraic Riccati Equation	20
2.2.3 Case Study: Magnetic Tape Control Problem	24
2.3 Recursive Methods for Weakly Coupled Linear Continuous Systems	26
2.3.1 Parallel Algorithm for Solving Algebraic Lyapunov Equation	26
2.3.2 Parallel Algorithm for Solving Algebraic Riccati Equation	28
2.4 Approximate Linear Regulator Problem for Continuous Systems	
2.5 Recursive Methods for Singularly Perturbed Linear Discrete Systems	3 3
2.5.1 Parallel Algorithm for Solving Algebraic Lyapunov Equation	.34
2.5.2 Case Study: An F-8 Aircraft	37
2.5.3 Parallel Algorithm for Solving Algebraic Riccati Equation	
2.6 Approximate Linear Regulator for Discrete Systems	
2.6.1 Case Study: Discrete Model of An F-8 Aircraft	
2.7 Recursive Methods for Weakly Coupled Linear Discrete Systems	

CONTENTS

2.7.1 Parallel Algorithm for Solving Discrete Algebraic Lyapunov Equation	47
2.7.2 Case Study: Discrete Catalytic Cracker	
2.7.3 Parallel Algorithm for Solving Algebraic Riccati Equation	
2.7.4 Case Study: Discrete Model of a Chemical Plant	
2.8 Notes and Comments	
3. Decoupling Transformations	61
3.1 Introduction	
3.2 Decoupling Transformation for Singularly Perturbed Linear Systems	
3.3 Decoupling Transformation for Weakly Coupled Linear Systems	64
3.4 New Versions of Decoupling Transformations	
3.4.1 New Decoupling Transformation for Linear Weakly	72
3.4.2 New Decoupling Transformation for Linear Singularly Perturbed Systems	75
3.5 Decomposition of the Differential Lyapunov Equations	
3.6 Boundary Value Problem for Linear Continuous Weakly Coupled Systems	
3.7 Boundary Value Problem for Linear Discrete-Time Weakly Coupled Systems	
4. Output Feedback Control	89
4.1 Introduction	
4.2 Output Feedback for Singularly Perturbed Linear Systems	91
4.3 Case Study: Fluid Catalytic Cracker	
4.4 Output Feedback for Linear Weakly Coupled Systems	100
4.5 Case Study: Twelve Plate Absorption Column	107
5. Linear Stochastic Systems	111
5.1 Recursive Approach to Singularly Perturbed Linear Stochastic Systems	111
5.2 Case Study: F-8 Aircraft LQG Controller	121
5.3 Recursive Approach to Weakly Coupled Linear Stochastic Systems	
5.4 Case Study: Electric Power System	
5.5 Parallel Reduced-Order Controllers for Stochastic Linear Discrete Singularly Perturbed Systems	
5.6 Case Study: Discrete Steam Power System	
	144

5.7 Linear-Quadratic Gaussian Control of Discrete Weakly	
Coupled Systems at Steady State	
5.8 Case Study: Distillation Column	
Appendix 5.1	156
6. Open-Loop Optimal Control Problems	159
6.1 Open-Loop Singularly Perturbed Control Problem	
6.2 Case Study: Magnetic Tape Control	
6.3 Open-Loop Weakly Coupled Optimal Control Problem	
6.4 Case Study: Distillation Column	
6.5 Open-Loop Discrete Singularly Perturbed Control Problem	
6.6 Case Study: F-8 Aircraft Control Problem	
6.7 Open-Loop Discrete Weakly Coupled Control Problem	
6.8 Numerical Example	
6.9 Conclusion.	188
Appendix 6.1	189
Appendix 6.2	189
Appendix 6.3	191
Appendix 6.4	192
7. Exact Decompositions of Algebraic Riccati Equations	193
7.1 The Exact Decomposition of the Singularly Perturbed Algebra	
Riccati Equation	
7.2 Numerical Example	201
7.3 The Exact Decomposition of the Weakly Coupled Algebraic	
Riccati Equation.	202
7.4 Case Study: A Satellite Control Problem	
7.5 Conclusion	
Appendix 7.1	
Appendix 7.2	
Appendix 7.3	210
8. Differential and Difference Riccati Equations	213
8.1 Recursive Solution of the Singularly Perturbed Differential	
Riccati Equation	213
8.2 Case Study: A Synchronous Machine Connected to an	
	223
8.3 Recursive Solution of the Riccati Differential Equation of	224
Weakly Coupled Systems	
0.4 Case addov: Cias Adsordet	231

CONTENTS

8.5 Reduced-Order Solution of the Singularly Perturbed Matrix Difference Riccati Equation	233
8.6 Case Study: Linearized Discrete Model of an F-8 Aircraft	239
8.7 Reduced-Order Solution of the Weakly Coupled Matrix Difference Riccati Equation	239
8.8 Numerical Example	246
Appendix 8.1	
Appendix 8.2	
Appendix 8.3	
Appendix 8.4	
PART TWO — APPLICATIONS	253
9. Quasi Singularly Perturbed and Weakly Coupled Linear Systems	255
9.1 Linear Control of Quasi Singularly Perturbed Hydro Power Plants	255
9.2 Case Study: Hydro Power Plant	
9.2.1 Weakly Controlled Fast Modes Structure	
9.2.2 Strongly Controlled Slow Modes Structure	
9.2.3 Weakly Controlled Fast Modes and Strongly Controlled Slow Modes Structure	
9.3 Reduced-Order Design of Optimal Controller for Quasi Weak Coupled Linear Systems	ly 270
9.4 Case Studies	
9.4.1 Chemical Reactor	
9.4.2 F-4 Fighter Aircraft	276
9.4.3 Multimachine Power System	
9.5 Reduced-Order Solution for a Class of Linear-Quadratic Optimal Control Problems	281
9.5.1 Numerical Example	
9.6 Case Studies	
9.6.1 Case Study 1: L-1011 Fighter Aircraft	
9.6.2 Case Study 2: Distillation Column	
9.7 Notes	
Appendix 9.1	

10. Singularly Perturbed Weakly Coupled Linear Control	•
Systems	
10.1 Introduction	
10.2 Singularly Perturbed Weakly Coupled Linear Control Systems	
10.3 Case Studies	
10.3.1 Case Study 1: A Model of Supported Beam	
10.3.2 Case Study 2: A Satellite Control Problem	300
10.4 Quasi Singularly Perturbed Weakly Coupled Linear Control Systems	300
10.5 Case Studies	308
10.6 Conclusion	308
Appendix 10.1	311
11. Stochastic Output Feedback of Linear Discrete Systems	313
11.1 Introduction	
11.2 Output Feedback of Quasi Weakly Coupled Linear	
Stochastic Discrete Systems	316
11.3 Case Study: Flight Control System for Aircrafts	325
11.4 Output Feedback of Singularly Perturbed Stochastic Discrete Systems	329
11.4.1 Problem Formulation	
11.4.2 Slow-Fast Lower Order Decomposition	
11.5 Case Study: Discrete Model of a Steam Power System	
12. Applications to Differential Games	343
12.1 Weakly Coupled Linear-Quadratic Nash Games	
12.2 Solution of Coupled Algebraic Riccati Equations	
12.2.1 Zeroth-Order Approximation	
12.2.2 Solution of Higher Order of Accuracy	
12.3 Numerical Examples	
Appendix 12.1	
Appendix 12.2	
13. Recursive Approach to High Gain and Cheap Control	
Problems	363
13.1 Linear-Quadratic Cheap and High Gain Control Problems	
13.1.1 High Gain Feedback Control	
13.1.2 Cheap Control Problem	
13.1.3 Parallel Algorithm for Solving Algebraic Riccati	
Equations for Chean Control and High Gain Feedback	367

CONTENTS

13.2 Case Study: Large Space Structure	377
13.3 Decomposition of the Open-Loop Cheap Control Problem	379
13.4 Numerical Example	
13.5 Exact Decomposition of the Algebraic Riccati Equation for Cheap Control Problem	
13.6 Numerical Example	
Appendix 13.1	
14. Linear Approach to Bilinear Control Systems	399
14.1 Introduction	399
14.2 Reduced-Order Open Loop Optimal Control of Bilinear	401
14.3 Reduced-Order Closed Loop Optimal Control of Bilinear Systems	409
14.3.1 Composite Near-Optimal Control of Bilinear Systems	
14.4 Case Study: Induction Motor Drives	
14.5 Near-Optimal Control of Singularly Perturbed Bilinear	
Systems.	
14.6 Optimal Control of Weakly Coupled Bilinear Systems	
Systems	419
14.6.2 Closed-Loop Control of Weakly Coupled Bilinear Systems	425
14.7 Case Study: A Paper Making Machine	427
14.8 Conclusion	
Bibliography	433
Index	451