La	audatio: The Mathematical Work of Jurgen Gartner	I
Fr	rank den Hollander	
1	Gärtner–Ellis Large Deviation Principle	1
2	Kolmogorov–Petrovskii–Piskunov Equation	3
3	Dawson-Gärtner Projective Limit Large Deviation Principle	4
4	McKean-Vlasov Equation	5
5	Parabolic Anderson Model	6
6	Personal Remarks	8
Re	eferences	9
Pa	art I The Parabolic Anderson Model	
Tł	he Parabolic Anderson Model with Long Range Basic	
H	amiltonian and Weibull Type Random Potential	13
St	anislav Molchanov and Hao Zhang	
1	Dedication and Introduction	13
2	The Annealed and Quenched Asymptotic Properties	
	of $u(t,0)$ with Weibull Potential $V(x,\omega_m)$: $P\{V(\cdot) > x\} = \exp\{-\frac{x^{\alpha}}{\alpha}\}$	20
3	The Annealed and Quenched Asymptotic Properties	
	of $u(t,0)$ with Potential $V(x,\omega_m)$ of the Form	
	$P\{V(\cdot) > x\} = \exp\left\{-\frac{x^{\alpha}}{\alpha}L(x)\right\}$	23
4	u	30
Re	eferences	30
Pa	arabolic Anderson Model with Voter Catalysts:	
	ichotomy in the Behavior of Lyapunov Exponents	33
	régory Maillard, Thomas Mountford, and Samuel Schöpfer	
1	Introduction	34
•	1.1 Model	34
	1.2 Voter Model	34
	1.3 Lyapunov Exponents	35
	1.4 Main Results	38
		хi

2	Proof of Theorems 1.1 and 1.3	39
	2.1 Coarse-Graining and Skeletons	40
	2.2 The Bad Environment Set B_E	42
	2.3 The Bad Random Walk Set B _W	48
	2.4 Proof of Theorem 1.1	51
3	Proof of Theorem 1.4	51
4	Proof of Theorem 1.4	62
Re	eferences	67
	recise Asymptotics for the Parabolic Anderson Model	6 0
	th a Moving Catalyst or Trap	69
_	drian Schnitzler and Tilman Wolff	70
1	Introduction	70
2	Moving Trap	73
	2.1 Localized Initial Condition	74
	2.2 Homogeneous Initial Condition	75
3	Moving Catalyst	79
	3.1 Spectral Properties of Higher-Order Anderson Hamiltonians	80
	3.2 Application to Annealed Higher Moment Asymptotics	87
Re	eferences	88
p _a	arabolic Anderson Model with a Finite Number of Moving	
	atalysts	91
	bienne Castell, Onur Gün, and Grégory Maillard	
1	Introduction	92
ī	1.1 Model	92
		93
	* *	94
	1.3 Literature	95
	1.4 Main Results	99
^	1.5 Discussion	100
2	Proof of Theorem 1.1	
3	Proof of Theorems 1.2–1.3	106
	3.1 Proof of Theorem 1.2	106
	3.2 Proof of Theorem 1.3	107
4	Proof of Theorem 1.4	108
5	Proof of Corollary 1.1	110
,	ppendix	111
Re	eferences	116
Sı	urvival Probability of a Random Walk Among a Poisson	
	ystem of Moving Traps	119
	lexander Drewitz, Jürgen Gärtner, Alejandro F. Ramírez,	
	nd Rongfeng Sun	
1	Introduction	120
	1.1 Model and Results	120
	1.2 Relation to the Parabolic Anderson Model	122

	1.3	Review of Related Results	123
	1.4	Outline	125
2	Ann	ealed Survival Probability	126
	2.1	Existence of the Annealed Lyapunov Exponent	126
	2.2	Special Case $\kappa = 0$	128
	2.3	Lower Bound on the Annealed Survival Probability	131
	2.4	Upper Bound on the Annealed Survival Probability:	
		The Pascal Principle	133
3		nched and Semi-Annealed Upper Bounds	138
4		tence and Positivity of the Quenched Lyapunov Exponent	144
	4.1	Shape Theorem and the Quenched Lyapunov Exponent	144
	4.2	Proof of Shape Theorem for Bounded Ergodic Potentials	148
	4.3	Existence of the Quenched Lyapunov Exponent for the PAM	151
	4.4	Positivity of the Quenched Lyapunov Exponent	154
Re	feren	ces	157
Οι	ıench	ed Lyapunov Exponent for the Parabolic Anderson	
		n a Dynamic Random Environment	159
		Gärtner, Frank den Hollander, and Grégory Maillard	
1		duction	160
	1.1	Parabolic Anderson Model	160
	1.2	Lyapunov Exponents	162
	1.3	Literature	163
	1.4	Main Results	167
	1.5	Discussion and Open Problems	168
2	Proc	of of Theorems 1.1–1.3	170
	2.1	Proof of Theorem 1.1	170
	2.2	Proof of Theorem 1.2(i)	171
	2.3	Proof of Theorem 1.2(ii)	173
	2.4	Proof of Theorem 1.2(iii)	177
	2.5	Proof of Theorem 1.3(i)	179
	2.6	Proof of Theorem 1.3(iii)	180
	2.7	Proof of Theorem 1.3(ii)	186
3	Proc	of of Theorems 1.4–1.6	189
	3.1	Proof of Theorem 1.4	189
	3.2	Proof of Theorem 1.5	189
	3.3	Proof of Theorem 1.6	191
Re	feren	ces	192
A a	vmnt	atia Shape and Dropogation of Frants	
		otic Shape and Propagation of Fronts wth Models in Dynamic Random Environment	195
		esten, Alejandro F. Ramírez, and Vladas Sidoravicius	173
Па 1	•	oduction	195
2		ad of an Infection in a Moving Population $(D_A > 0, D_B > 0)$	199
_	2.1	Shape Theorem	199
	2.2	Phase Transition	206
		* ****** * * *************************	

xiv Contents

3	The S	Stochastic Combustion Process ($D_A = 0, D_B > 0$)	208
	3.1	Shape Theorem	208
	3.2	The Stochastic Combustion Process in Dimension $d = 1$	209
	3.3	Activated Random Walks Model and Absorbing State	
		Phase Transition	215
4	Mod	ified Diffusion Limited Aggregation ($D_A > 0$, $D_B = 0$)	216
		ces	222
		abolic Anderson Model with Acceleration and Deceleration	225
Wo		g König and Sylvia Schmidt	
1		duction	225
2	Assu	mptions and Preliminaries	
	2.1	Model Assumptions	227
	2.2	Variational Formulas	228
3	Resu	lts	230
	3.1	Five Phases	230
	3.2	Moment Asymptotics	231
	3.3	Variational Convergence	
4		f of Variational Convergence (Proposition 3.3)	
5		f for Phases 1–3 (Theorem 3.1)	
6		f for Phase 4 (Theorem 3.2)	
		ces	
			277
A	Scalir	ng Limit Theorem for the Parabolic Anderson Model	
wi	th Ex	ponential Potential	247
Hι		Lacoin and Peter Mörters	
1	Intro	duction and Main Results	247
	1.1	Overview and Background	247
	1.2	Statement of Results	251
2	Proo	f of the Main Results	252
	2.1	Overview	252
	2.2	Auxiliary Results	
	2.3	Upper Bounds	
	2.4	Analysis of the Variational Problem	
	2.5	Proof of the Almost Sure Asymptotics	
	2.6	Proof of the Weak Asymptotics	
	2.7	Proof of the Scaling Limit Theorem	
2		cluding Remarks	
3		_	271
K	101011	ces	~/1
p.	rt II	Self-Interacting Random Walks and Polymers	
	.1 . 11	Son Anternomia Anninomia Trumb und 1 Orjanoro	
TI	he Str	ong Interaction Limit of Continuous-Time Weakly	
		oiding Walk	275
		Brydges, Antoine Dahlqvist, and Gordon Slade	~,5
1		hb–Joyce Model: Discrete Time	275
1	DOII	io-soyee Model. Discrete Time	213

2	The	Continuous-Time Weakly Self-Avoiding Walk	
	2.1	Fixed-Length Walks	278
	2.2	Two-Point Function	281
Re	feren	ces	286
Co	maly	mers at Selective Interfaces: Settled Issues	
			289
	-	en Problems	205
		co Caravenna, Giambattista Giacomin, io Lucio Toninelli	
_			289
Ì		olymers and Selective Solvents	
	1.1	A Basic Model	289
	1.2	The (General) Copolymer Model	291
	1.3	The Free Energy: Localization and Delocalization	293
	1.4	The Phase Diagram	294
	1.5	The Critical Behavior and a Word About Pinning Models	298
	1.6	Organisation of the Chapter	299
2		alization Estimates	300
3		ocalization Estimates	302
	3.1	Fractional Moment Method: The General Principle	302
	3.2	Fractional Moment Method: Application	303
4		tinuum Model and Weak Coupling Limit	304
5	Path	Properties	306
	5.1	The Localized Phase	307
	5.2	The Delocalized Phase	308
Re	feren	ces	310
So	me I	ocally Self-Interacting Walks on the Integers	313
		rschler, Bálint Tóth, and Wendelin Werner	31.
1		oduction	313
2		vey of Left–Right Symmetric Cases	
_	2.1	When $b > 0$ and $-b/3 < a < b$: The TRSM Regime?	
	2.1	When $b > 0$ and $a < -b/3$: The Stuck Case	319
	2.2	When $b \ge 0$ and $a < -b/5$. The Stock Case	
	2.4	The Two Critical Cases	322
	2.5	Stationary Measures for the Cases Where $b > 0$	222
	0.6	and $-b/3 < a < b$	
2		Some Comments	
3		ne Cases Without Left–Right Symmetry	
	3.1	Setup and Statement	
	3.2	The Scenario	329
	3.3	Auxiliary Sequences	331
	3.4	The Coupling	332
	3.5	An Example with Logarithmic Behaviour	334
	3.6	Ballistic Behaviour	336
4		ne Open Questions	337
Re	feren	ces	338

xvi Contents

		d Polymers in Random Environment	339
Dn		offe and Yvan Velenik	
1	Intro	duction	339
	1.1	Class of Models	340
	1.2	Ballistic and Sub-Ballistic Phases	342
	1.3	Lyapunov Exponents	343
	1.4	Very Weak, Weak, and Strong Disorder	344
2	Larg	e Deviations	345
	2.1	Ramifications for Ballistic Behavior	346
	2.2	Proof of Lemma 1	347
3	Geor	netry of Typical Polymers	348
	3.1	Skeletons of Paths	348
	3.2	Annealed Models	349
	3.3	Quenched Models	350
	3.4	Irreducible Decomposition and Effective Directed Structure	354
	3.5	Basic Partition Functions	355
4	The	Annealed Model	356
	4.1	Asymptotics of $\mathbf{t}_n = \sum_{\mathbf{x}} \mathbf{t}_{\mathbf{x},n} \dots$	356
	4.2	Geometry of \mathbf{K}_{1}^{a} , Annealed LLN and CLT	357
	4.3	Local Limit Theorem for the Annealed Polymer	358
5	Wea	k Disorder	359
-	5.1	LLN at Supercritical Drifts	359
	5.2	Very Weak Disorder	360
	5.3	Convergence of Partition Functions	361
	5.4	Quenched CLT	364
6		ng Disorder	365
Ü	6.1	Normalization	366
	6.2	Reduction to Basic Partition Functions	366
	6.3	Fractional Moments	367
D.		ces	368
IXC	reich		500
Pa	rt III	Branching Processes	
		ale Analysis: Fisher–Wright Diffusions with Rare	
		ons and Selection, Logistic Branching System	373
Do		A. Dawson and Andreas Greven	
1	Mot	ivation and Background	374
	1.1	Outline	376
2	The	Fisher-Wright Model with Rare Mutation and Selection	376
	2.1	A Two-Type Mean-Field Diffusion Model and Its Description	376
	2.2	Two Time Windows for the Spread of the Advantageous Type	378
	2.3	The Early Time Window as $N \to \infty$	379
	2.4	The Late Time Window as $N \to \infty$	382

Contents xvii

3	A Logistic Branching Random Walk and Its Growth	
	3.1 The Logistic Branching Particle Model	388
	3.2 The Early Time Window as $N \to \infty$	390
	3.3 The Droplet Expansion and Crump–Mode–Jagers Processes	391
	3.4 Time Point of Emergence as $N \to \infty$	394
	3.5 The Late Time Window as $N \to \infty$	395
4	The Duality Relation	398
	4.1 A Classical Duality Formula	398
	4.2 The Genealogy and Duality	400
	4.3 The Dual for General Type Space	401
	4.4 Outlook on Set-Valued Duals	406
Re	ferences	407
D.	and a of Chatas of Common of Chable Motion with Dronghing	
	operties of States of Super- α -Stable Motion with Branching Index $1 + \beta$	409
	aus Fleischmann, Leonid Mytnik, and Vitali Wachtel	707
1	Model: Super-α-Stable Motion with Branching	
1	of Index $1 + \beta$	410
2	Dichotomy of States at Fixed Times	411
2	Absolutely Continuous States	411
3	3.1 Dichotomy of Density Functions	
	3.2 Local Hölder Continuity of Continuous Density Functions	
	3.3 Some Transition Curiosity	
	•	_
	3.4 Hölder Continuity at a Given Point	
4		
4 D	Main Tools to get the Hölder Statements	
K	references	721
Da	art IV Miscellaneous Topics in Statistical Mechanics	
Г	it IV Wiscenaneous Topics in Statistical Mechanics	
٨	Quenched Large Deviation Principle and a Parisi Formula	
	r a Perceptron Version of the GREM	425
	win Bolthausen and Nicola Kistler	
l	Introduction	425
2	A Perceptron Version of the GREM	
3	Proofs	
5	3.1 The Gibbs Variational Principle: Proof of Theorem 2.3	
	3.2 The Dual Representation. Proof of the Theorem 2.5	
D.	eferences	442
		712
M	letastability: From Mean Field Models to SPDEs	443
A	nton Bovier	
1	Introduction	443
	1.1 Stochastic Ising Models	444
2	The Curie–Weiss Model	445

xviii Contents

3	Large Deviations	447
	3.1 Diffusions with Small Diffusivity	448
	3.2 Jump Processes Under Rescaling	448
	3.3 Markov Processes with Exponentially	
	Small Transition Probabilities	449
	3.4 Large Deviations by Massive Entropy Production	449
4	Limitations of the Large Deviation Approach and Alternatives	450
5	Capacity Estimates	452
	5.1 Random Path Representation and Lower Bounds on Capacities	454
	5.2 Capacity Estimates for Mesoscopic Chains and the	
	Return of $d = 1$	456
6	Stochastic Partial Differential Equations	458
7	Open Issues	459
	7.1 Initial Distributions and Regularity Theory	
	7.2 Canonical Constructions of Flows	460
Re	eferences	461
TT.	Jun Jun and I find the Was Intenfess Model via	
	ydrodynamic Limit for the $ abla arphi$ Interface Model via	463
	wo-Scale Approach	403
_	dahisa Funaki	463
ł	Introduction	
	1.1 Setting	
	1.2 The Ginzburg–Landau $\nabla \varphi$ Interface Model	
2	1.3 Main Result	
2	A Priori Estimates	
3	Proof of Theorem 1.1	
	3.1 Derivative of $\Theta(t)$	
	3.2 The Term I_2	
	3.3 The Term I_1	
	3.4 Summary and Completion of the Proof of Theorem 1.1	
4	Validity of Assumption A for Convex Potentials	
	4.1 Assumption A-(2)	
	4.2 Assumption A-(1)	
Re	eferences	489
St	atistical Mechanics on Isoradial Graphs	491
	édric Boutillier and Béatrice de Tilière	
1	Introduction	491
	1.1 Transfer Matrices, Star Transformations, and Z-Invariance	493
	1.2 Conformal Field Theory and Discrete Complex Analysis	
2	Discrete Complex Analysis on Isoradial Graphs	
	2.1 Discrete Holomorphic and Discrete Harmonic Functions	
	2.2 Discrete Exponential Functions	
	2.3 Geometric Integrability of Discrete Cauchy–Riemann Equations	
	2.4 Generalization of the Operator $\bar{\partial}$	

3	B Dimer Model		
	3.1	Dirac Operator and Its Inverse	501
	3.2	Dirac Operator and Dimer Model	502
	3.3	Other Results	503
4	Ising	Model	504
	4.1	Conformal Invariance	505
	4.2	The Two-Dimensional Ising Model as a Dimer Model	507
5	Othe	r Models	508
	5.1	Random Walk and the Green Function	508
	5.2	<i>q</i> -Potts Models and the Random Cluster Model	509
	5.3	6-Vertex and 8-Vertex Models	510
Re	ferenc	es	510