Contents

In	Introduction			
1.	Lecture 1 – Master Equations and Sources I			
	1.1 Photoemissive sources	5		
	1.2 Master equations	6		
	1.3 Master equation for a cavity mode driven by thermal light	9		
	1.4 The cavity output field	13		
	1.5 Correlations between the free field and the source field	16		
2.	Lecture 2 – Master Equations and Sources II			
	2.1 Two-state atoms	22		
	2.2 Master equation for a two-state atom in thermal equilibrium	24		
	2.3 Phase destroying processes	28		
	2.4 The radiated field	33		
	2.5 Other sources: resonance fluorescence, lasers, parametric	-		
	oscillators	3 5		
3.	Lecture 3 – Standard Methods of Analysis I			
	3.1 Operator expectation values	39		
	3.2 Correlation functions: the quantum regression theorem	41		
	3.3 Optical spectra	46		
	3.4 The Hanbury-Brown-Twiss effect	52		
	3.5 Photon antibunching	53		
4.	Lecture 4 – Standard Methods of Analysis II			
	4.1 Quantum-classical correspondence	58		
	4.2 Fokker-Planck equation for a cavity mode driven by thermal	00		
	light	64		
	4.3 Stochastic differential equations	67		
	4.4 Linearization and the system size expansion	68		
		73		
	4.5 The degenerate parametric oscillator	13		
5.	Lecture 5 - Photoelectric Detection I	70		
	5.1 Photoelectron counting for a constant intensity classical field	78		
	5.2 Photoelectron counting for general classical field	80		

	~
Х	Contents

	5.3 Moments of the counting distribution	82
	5.4 The waiting-time distribution	86
	5.5 Photoelectron counting for quantized fields	88
6.	Lecture 6 - Photoelectric Detection II	
	6.1 Squeezed light	93
	6.2 Homodyne detection: the spectrum of squeezing	100
	6.3 Vacuum fluctuations	103
	6.4 Squeezing spectra for the degenerate parametric oscillator	107
	6.5 Photoelectron counting for the degenerate parametric oscillator	110
7.	Lecture 7 – Quantum Trajectories I	
	7.1 Exclusive and nonexclusive photoelectron counting	
	probabilities	114
	7.2 The distribution of waiting times	116
	7.3 Quantum trajectories from the photoelectron counting	
	distribution	117
	7.4 Unravelling the master equation for the source	121
	7.5 Stochastic wavefunctions	122
8.	Lecture 8 - Quantum Trajectories II	
	8.1 Damped atoms and cavities	126
	8.2 Resonance fluorescence	130
	8.3 Cavity mode driven by thermal light	134
	8.4 The degenerate parametric oscillator	136
	8.5 Complementary unravellings	138
9.	Lecture 9 – Quantum Trajectories III	
	9.1 The riddle of squeezed light	140
	9.2 Homodyne detection	143
	9.3 Nonclassical photoelectron correlations	146
	9.4 Stochastic Schrödinger equation for the degenerate	
	parametric oscillator	148
	9.5 Nonlocality	152
10). Lecture 10 – Quantum Trajectories IV	
	10.1 Single-atom absorptive optical bistability	155
	10.2 Strong coupling: cavity QED	160
	10.3 Spontaneous dressed-state polarization	162
	10.4 Semiclassical analysis	164
	10.5 Quantum stability, phase switching, and Schrödinger cats	166
P	ostscript	174