## **Contents**

| Cnap  | ter 1. Small Conjugated Polyenes                       |    |
|-------|--------------------------------------------------------|----|
| 1.1   | Introduction                                           | 1  |
| 1.2   | Hückel Molecular Orbital Calculations                  | 3  |
| 1.2.1 | The Wave Equation                                      | 3  |
| 1.2.2 | The LCAO Method                                        | 5  |
| 1.3   | Graph Theoretical Terminology                          | 6  |
| 1.3.1 | Molecular Graph Notation                               | 6  |
| 1.3.2 | 1-Factor Subgraphs and Kékulé Structures               | 7  |
| 1.3.3 | Common Molecular Graphs                                | 7  |
| 1.4   | Determining Characteristic Polynomials                 | 7  |
| 1.4.1 | Characteristic Polynomials                             | 7  |
| 1.4.2 | Sachs graphs                                           | 9  |
| 1.4.3 | The Fourth and Sixth Coefficients                      | 11 |
| 1.4.4 | Odd Coefficients                                       | 12 |
| 1.4.5 | The Tail Coefficient                                   | 13 |
| 1.5   | Determining Select Eigenvalues by Embedding            | 13 |
| 1.5.1 | Introduction                                           | 13 |
| 1.5.2 | Descriptive Embedding Rules                            | 14 |
| 1.5.3 | The Pairing Theorem                                    | 16 |
| 1.5.4 | Relationships Between the Zero Roots and Coefficient   |    |
|       | of a Polynomial                                        | 17 |
| 1.6   | Eigenvectors                                           | 18 |
| 1.6.1 | Introduction                                           | 18 |
| 1.6.2 | Path Deleting Procedure for Determining Eigenvectors   | 18 |
| 1.6.3 | Vertex Deleting Procedure for Determining Eigenvectors | 22 |
| 1.6.4 | Determination of Bond Order                            | 24 |
| 1.6.5 | Example Applications                                   | 25 |
| 1.7   | References                                             | 26 |
| 1.8   | Problems                                               | 27 |
| Chapt | er 2. Decomposition of Molecules with n-Fold Symmetry  |    |
| 2.1   | Introduction                                           | 29 |
| 2.2   | Decomposition of Molecules with 2-Fold Symmetry        | 29 |
| 221   | Mirror Plane Fragmentation                             | 29 |



| X | Contents |
|---|----------|
|   |          |

| 2.2.2<br>2.2.3 | Common Right-Hand Mirror Plane Fragments Factorization of Molecules with a Twofold Axis of Rotation | 43  |
|----------------|-----------------------------------------------------------------------------------------------------|-----|
| 2.3            | Molecules with <i>n</i> -Fold Symmetry                                                              | 47  |
| 2.3<br>2.3.1   | Introduction                                                                                        | 47  |
| 2.3.1          | Factorization of Molecular Graphs with 3-Fold Symmetry                                              | 49  |
| 2.3.3          | Factorization of Molecular Graphs with 4-Fold Symmetry                                              | 50  |
| 2.3.4          | A General Method for Factorization of <i>n</i> -Fold Symmetrical                                    |     |
| 2.5            | Molecular Graphs                                                                                    | 52  |
| 2.3.5          | Spectroscopic Evidence for Electronic Degeneracy                                                    |     |
|                | in Molecules with Greater than 2-Fold Symmetry                                                      | 64  |
| 2.4            | References                                                                                          | 65  |
| 2.5            | Problems                                                                                            | 65  |
| Chapt          | ter 3. Heterocyclic and Organometallic Molecules                                                    |     |
| 3.1            | Introduction                                                                                        | 69  |
| 3.2            | Heterocyclic and Related Molecules                                                                  | 74  |
| 3.2.1          | Characteristic Polynomials of Small Molecular Graphs                                                |     |
| J.2.1          | with one Heteroatom                                                                                 | 74  |
| 3.2.2          | Characteristic Polynomials of Small Molecular Garphs                                                |     |
|                | with Multiple Heteroatoms                                                                           | 76  |
| 3.2.3          | Eigenvectors corresponding to heterocyclic molecules                                                | 77  |
| 3.2.4          | 3-Fold Polyazaheterocyclic Molecules                                                                | 79  |
| 3.3            | Characteristic Polynomials of π-Hydrocarbon-Iron                                                    |     |
|                | Tricarbonyl Complexes                                                                               | 84  |
| 3.3.1          | Basis Orbitals for π-Hydrocarbonyl-Iron Tricarbonyl Complexes                                       | 84  |
| 3.3.2          | Determining Characteristic Polynomials and Eigenvalues                                              | 87  |
| 3.3.3          | Eigenvalues by Embedding                                                                            | 89  |
| 3.3.4          | $\Delta E_{\pi}$ as a Relative Measure of Reaction Spontaniety                                      | 90  |
| 3.3.5          | Other Examples of Möbius Circuits                                                                   | 91  |
| 3.4            | References                                                                                          | 91  |
| 3.5            | Problems                                                                                            | 92  |
| Chap           | ter 4. Large Conjugated Polyenes                                                                    |     |
| 4.1            | Introduction                                                                                        | 95  |
| 4.2            | Molecular Orbital Solution of Buckminsterfullerene                                                  | 97  |
| 4.2.1          | Introduction                                                                                        | 97  |
| 4.2.2          | Eigenvalues of Buckminsterfullerene                                                                 | 100 |
| 4.3            | MO Solution of 3-Fold Coronene Derivatives                                                          | 102 |
| 4.3.1          | Factorization of 3-Fold Coronene Derivatives                                                        | 102 |
| 4.4            |                                                                                                     | 105 |
| 4.4.1          | Embedding of Benzenoid Hydrocarbons                                                                 | 103 |
| 7.7.1          | Naphthalene, Pentadienyl, and Styrene on Large Benzenoids .                                         | 105 |
|                |                                                                                                     | .00 |

|      | Contents                                                                | XI  |
|------|-------------------------------------------------------------------------|-----|
| 4.5  | References                                                              | 108 |
| 4.6  | Problems                                                                | 108 |
| Appe | endix A. BASIC Program for Finding the Real Roots                       |     |
| Appe | endix A. BASIC Program for Finding the Real Roots of a Monic Polynomial | 111 |
|      | of a Monic Polynomial                                                   |     |
|      |                                                                         |     |
| Com  | of a Monic Polynomial                                                   |     |