Contents

Ţ	introduction				
	1.1	Lessons from Nature	2		
	1.2	Industrial Significance	6		
	1.3	Research Objective and Approach	6		
	1.4	Organization of the Book	7		
	Refe	rences	7		
2	Roughness-Induced Superomniphobic Surfaces: Lessons				
	from Nature				
	2.1	Definitions and Applications	11		
	2.2	Natural Superhydrophobic, Self-Cleaning, Low			
		Adhesion/Drag Reduction Surfaces with Antifouling	13		
	2.3	Natural Superoleophobic, Self-Cleaning, and			
		Low-Drag Surfaces with Antifouling	15		
	2.4	Natural Superhydrophobic and High-Adhesion Surfaces	15		
	2.5	Summary	16		
	Refe	rences	16		
3	Modeling of Contact Angle for a Liquid in Contact with a				
	Rough Surface				
	3.1	Contact Angle Definition	19		
	3.2	Homogenous and Heterogeneous Interfaces			
		and the Wenzel and Cassie-Baxter Equations	20		
		3.2.1 Limitations of the Wenzel and Cassie Equations	26		
		3.2.2 Range of Applicability of the Wenzel and			
		Cassie Equations	28		
	3.3	Contact Angle Hysteresis	32		
	3.4	Stability of a Composite Interface and Role			
		of Hierarchical Structure	34		
	3.5	The Cassie–Baxter and Wenzel Wetting Regime Transition	38		
	3.6	Summary			
	Refe	rences	43		

ix

x Contents

Part I Lotus Effect

Contents xi

		6.4.3	Observation of Transition During the Droplet	
			Evaporation	100
		6.4.4	Another Cassie–Baxter and Wenzel Transition	
			for Different Series	104
		6.4.5	Contact Angle Hysteresis and Wetting-	
			Dewetting Asymmetry	106
		6.4.6	Contact Angle Measurements During	
			Condensation	
			and Evaporation of Microdroplets on	
			Micropatterned Surfaces	110
		6.4.7	Observation of Transition During the	
			Bouncing Droplet	113
		6.4.8	Summary	118
	6.5	Ideal S	urfaces with Hierarchical Structure	119
	6.6	Hierard	chical Structured Surfaces with Wax Platelets	
		and Tu	bules Using Nature's Route	120
		6.6.1	Effect of Nanostructures with Various Wax	
			Platelet Crystal Densities on Superhydrophobicity	125
		6.6.2	Effect of Hierarchical Structure with Wax	
			Platelets	
			on the Superhydrophobicity	129
		6.6.3	Effect of Hierarchical Structure with Wax	
			Tubules	
			on Superhydrophobicity	133
		6.6.4	Self-Cleaning Efficiency of Hierarchical	
			Structured Surfaces	140
		6.6.5	Observation of Transition During the	
			Bouncing Droplet	142
		6.6.6	Observation of Transition During the	
		0.0.0	Vibrating Droplet	146
		6.6.7	Measurement of Fluid Drag Reduction	152
		6.6.8	Summary	152
	6.7		nically Durable Hierarchical Structured Surfaces	153
	0	6.7.1	CNT Composites	154
		6.7.2	Nanoparticle Composites	163
	6.8		ary	169
			····	171
	110.1	on chicos		.,.
Par	t II	Salvinia	Effect	
7	Fab	rication a	and Characterization of Micropatterned	
	Stru	ictures In	nspired	179
	7.1	Introdu	uction	179
	7.2	Charac	eterization of Leaves and Fabrication of Inspired	
		Structu	ıral Surfaces	181

xii Contents

	7.3	Measu	rement of Contact Angle and Adhesion	182		
		7.3.1	Observation of Pinning and Contact Angle	182		
		7.3.2	Adhesion	184		
	7.4		ary	184		
	Refe	erences		186		
Par	t III	Rose Pe	etal Effect			
8	Characterization of Rose Petals and Fabrication and					
	Cha	racteriza	tion of Superhydrophobic Surfaces with			
			w Adhesion	189		
	8.1		ıction	189		
	8.2	Charac	eterization of Two Kinds of Rose Petals and			
		Their U	Jnderlying Mechanisms	190		
	8.3		ation of Surfaces with High and Low Adhesion	196		
	8.4		ary	205		
	Refe		······································	206		
Par	t IV	Oleopho	obic/Oleophilic Surfaces			
9	Mod	leling Fs	abrication, and Characterization			
			c/Oleophilic Surfaces	209		
	9.1	-	action	209		
	9.2		ing of Contact Angle for Various Surfaces			
	9.3		mental Techniques			
	9.4		ation and Characterization of Oleophobic Surfaces			
	<i>)</i> . i	9.4.1	Wetting Behavior on Flat and Micropatterned	2		
		2.1.1	Surfaces	214		
		9.4.2	Wetting Behavior on Flat and Micropatterned	٠, ٠		
		7.7.2	Surfaces with $C_{20}\mathbf{F}_{42}$	218		
		9.4.3	Wetting Behavior on Nano- and Hierarchical	210		
		7.7.3	Structures and Sharkskin Replica	220		
	9.5	Summ	ary			
	Kere	ichees		22.		
Par	t V	Shark sk	sin Effect			
10	Sha	rk skin S	urface for Fluid-Drag Reduction in Turbulent Flow	227		
	10.1		action	227		
	10.2		nisms of Fluid Drag	229		
	10.3		f Riblets in Drag Reduction			
	10.4		s with Various Riblet Geometries			
		10.4.1	Studies with 2D Riblets			
		10.4.2	Studies with 3D Riblets			
			Riblet Trends in Pipe Flow	246		

Contents xiii

	10.5	Riblet I	Fabrication and Applications	246
		10.5.1	Riblet Dimension Selection	248
		10.5.2	Application of Riblets for Drag Reduction	
			and Antifouling	248
		10.5.3	Riblet Fabrication Methods for Study	
			and Applications	251
	10.6	Effect of	of Fluid Slip and Polymer Additives on Fluid Drag	252
		10.6.1	The Effect of Fluid Slip on Drag Reduction	253
		10.6.2	Effect of Fish Mucus and Polymers on Fluid Drag	256
	10.7	Summa	ıry	258
	Refer	ences	······	262
Par	t VI	Gecko A	Adhesion	
11	Cock	a Adhee	ion	269
11	11.1		ction	269
	11.2		Attachment Systems	270
	11.2		Gecko	270
	11.3	11.3.1	Construction of Tokay Gecko	272
		11.3.1	•	212
		11.3.2	Adhesion Enhancement by Division of Contacts and Multilevel Hierarchical Structure	274
		1122		274
		11.3.3	Peeling	280
	11.4		· ·	283
	11.4		ment Mechanisms	285 285
		11.4.1	van der Waals Forces	
	115	11.4.2	Capillary Forces	286
	11.5		on Measurements and Data	287
		11.5.1	Adhesion Under Ambient Conditions	288
		11.5.2	Effects of Temperature	290
		11.5.3	Effects of Humidity	291
	11.6	11.5.4	Effects of Hydrophobicity	292 292
	11.6		on Modeling of Fibrillar Structures	292
		11.6.1	Single Spring Contact Analysis	
		11.6.2	The Multilevel Hierarchical Spring Analysis	295
		11.6.3	Adhesion Results of the Multilevel	200
		11 6 4	Hierarchical Spring Model	298
	11.7	11.6.4	Capillary Effects	305
	11.7		on Database of Fibrillar Structures	310
		11.7.1	Fiber Model	310
		11.7.2	Single Fiber Contact Analysis	310
		11.7.3	Constraints	311
		11.7.4	Numerical Simulation	316
		11.7.5	Results and Discussion	316

xiv Contents

	11.8 Fabrication of Gecko Skin-Inspired Structures			321	
		11.8.1	Single-Level Roughness Structures	321	
		11.8.2	Multilevel Hierarchical Structures	328	
	11.9 SummaryReferences			. 331	
				333	
12	Outlo	ook		339	
Index					
Bio	Biography				