Contents

Prej	face	xxi
Intr	Introduction	
	I TRANSITION AMPLITUDES IN ELECTRODYNAMICS	
Intr	roduction	5
A.	Probability Amplitude Associated with a Physical Process	7
В.	Time Dependence of Transition Amplitudes 1. Coupling between Discrete Isolated States 2. Resonant Coupling between a Discrete Level and a Continuum	9 9 10
	3. Couplings inside a Continuum or between Continua	12
C.	 Application to Electrodynamics Coulomb Gauge Hamiltonian Expansion in Powers of the Charges q_α Expansion in Powers of the Interaction with the Transverse Field Advantages of Including the Coulomb Interaction in the Particle Hamiltonian Diagrammatic Representation of Transition Amplitudes 	15 15 16 17 18 19
	Complement A_1 —Perturbative Calculation of Transition Amplitudes—Some Useful Relations	
Int	troduction	23
1.	Interaction Representation	23

vi Contents

3.	Perturbative Expansion of Transition Amplitudes—a. Perturbative Expansion of the Evolution Operator. b. First-Order Transition Amplitude. c. Second-Order Transition Amplitude Transition Probability—a. Calculation of the Transition Probability to a Final State Different from the Initial State. b. Transition Probability between Two Discrete States. Lowest-Order Calculation. c. Case Where the Final State Belongs to an Energy Continuum. Density of States. d. Transition Rate toward a Continuum of Final States. e. Case Where both the Initial and Final States Belong to a Continuum	25
	Complement B_I —Description of the Effect of a Perturbation by an Effective Hamiltonian	
1.	Introduction—Motivation	38
2.	Principle of the Method	41
3.	Determination of the Effective Hamiltonian—a. Iterative Calculation of S. b. Expression of the Second-Order Effective	
	Hamiltonian. c. Higher-Order Terms	43
4.	Case of Two Interacting Systems	46
	COMPLEMENT C ₁ —Discrete Level Coupled to a Broad Continuum: A Simple Model	
Int	troduction	49
1.	Description of the Model—a. The Discrete State and the Continuum. b. Discretization of the Continuum. c. Simplifying Assumptions	50
2.	Stationary States of the System. Traces of the Discrete State in the New Continuum—a. The Eigenvalue Equation. b. Graphic Determination of the New Eigenvalues. c. Probability Density of	
3.	the Discrete State in the New Continuum A Few Applications of This Simple Model—a. Decay of the	51
	Discrete Level. b. Excitation of the System in the Discrete Level from Another State. c. Resonant Scattering through a Discrete	
4.	Level. d. Fano Profiles	56
	the Hamiltonian without Discretization	64

Contents	vii
Commen	7 11

II A SURVEY OF SOME INTERACTION PROCESSES BETWEEN PHOTONS AND ATOMS

١.	Emission Process: A New Photon Appears
	1. Spontaneous Emission between Two Discrete Atomic Lev-
	els. Radiative Decay of an Excited Atomic State—a. Dia-
	grammatic Representation. b. Spontaneous Emission Rate.
	c. Nonperturbative Results
	2. Spontaneous Emission between a Continuum State and a Discrete State—a. First Example: Radiative Capture. b. Second Example: Radiative Dissociation of a Molecule
	3. Spontaneous Emission between Two States of the Ioniza-
	tion Continuum—Bremsstrahlung
•	Absorption Process: A Photon Disappears
	1. Absorption between Two Discrete States
	2. Absorption between a Discrete State and a Continuum
	State—a. First Example: Photoionization. b. Second Exam-
	ple: Photodissociation
	3. Absorption between Two States of the Ionization Continuum: Inverse Bremsstrahlung
	4. Influence of the Initial State of the Field on the Dynamics
	of the Absorption Process
	Scattering Process: A Photon Disappears and Another Photon
	Appears
	1. Scattering Amplitude—Diagrammatic Representation
	2. Different Types of Photon Scattering by an Atomic of Molecular System—a. Low-Energy Elastic Scattering. Rayleigh Scattering. b. Low-Energy Inelastic Scattering. Raman Scattering. c. High-Energy Elastic Scattering: Thom-
	son Scattering. d. High-Energy Inelastic Scattering with the Final Atomic State in the Ionization Continuum: Compton
	Scattering
	3. Resonant Scattering
•	Multiphoton Processes: Several Photons Appear or Disappear
	1. Spontaneous Emission of Two Photons
	2. Multiphoton Absorption (and Stimulated Emission) be-
	tween Two Discrete Atomic States

viii Contents

	3. Multiphoton Ionization4. Harmonic Generation	102 104
	5. Multiphoton Processes and Quasi-Resonant Scattering	106
E.	Radiative Corrections: Photons Are Emitted and Reabsorbed (or Absorbed and Reemitted) 1. Spontaneous Radiative Corrections—a. Case of a Free Elec-	109
	tron: Mass Correction. b. Case of an Atomic Electron: Natural Width and Radiative Shift 2. Stimulated Radiative Corrections	109 114
F.	Interaction by Photon Exchange	118
	Particles: First Correction to the Coulomb Interaction	118
	a. Small Distance: $D \ll \lambda_{ab}$. b. Large Distance $\lambda_{ab} \ll D$	121
	Complement A _{II} —Photodetection Signals and Correlation Functions	
Int	roduction	127
1. 2.	Simple Models of Atomic Photodetectors—a. Broadband Photodetector. b. Narrow-Band Photodetector	128
	c. Atomic Dipole Correlation Function. d. Field Correlation Function	129
3.	Broadband Photodetection—a. Condition on the Correlation	
4.	Functions. b. Photoionization Rate	137
5.	Atomic Level	139 143

Contents ix

	Complement B_{II} —Radiative Corrections in the Pauli-Fierz Representation	
Int	roduction	147
1.	The Pauli-Fierz Transformation—a. Simplifying Assumptions. b. Transverse Field Tied to a Classical Particle. c. Determination of the Pauli-Fierz Transformation	148
2.	The Observables in the New Picture—a. Transformation of the Transverse Fields. b. Transformation of the Particle Dynamical	
3.	Variables. c. Expression for the New Hamiltonian	152
	Concept of a Field Tied to a Particle	157
	III	
	NONPERTURBATIVE CALCULATION OF TRANSITION AMPLITUDES	
Int	roduction	165
A.	Evolution Operator and Resolvent	167
	1. Integral Equation Satisfied by the Evolution Operator	167
	2. Green's Functions—Propagators	167
	3. Resolvent of the Hamiltonian	170
B.	Formal Resummation of the Perturbation Series	172
	 Diagrammatic Method Explained on a Simple Model Algebraic Method Using Projection Operators—a. Projector onto a Subspace \$\mathbb{E}_0\$ of the Space of States. b. Calculation of the Projection of the Resolvent in the Subspace \$\mathbb{E}_0\$. c. Calculation of Other Projections of \$G(z)\$. d. Interpretation of the 	172
	Level-Shift Operator 3. Introduction of Some Approximations—a. Perturbative Calculation of the Level-Shift Operator. Partial Resummation of the Perturbation Series. b. Approximation Consisting of Ne-	174
	glecting the Energy Dependence of the Level-Shift Operator	179
C.	Study of a Few Examples 1. Evolution of an Excited Atomic State—a. Nonperturbative Calculation of the Probability Amplitude That the Atom Re-	183

x Contents

	mains Excited. b. Radiative Lifetime and Radiative Level Shift. c. Conditions of Validity for the Treatment of the Two	
	Preceding Subsections	183
	2. Spectral Distribution of Photons Spontaneously Emitted by an Excited Atom—a. Relevant Matrix Element of the Resolvent Operator. b. Generalization to a Radiative Cascade. c. Natural Width and Shift of the Emitted Lines	189
	3. Indirect Coupling between a Discrete Level and a Continuum. Example of the Lamb Transition—a. Introducing the Problem. b. Nonperturbative Calculation of the Transition Amplitude. c. Weak Coupling Limit. Bethe Formula. d. Strong Coupling Limit. Rabi Oscillation	197
	4. Indirect Coupling between Two Discrete States. Multiphoton Transitions—a. Physical Process and Subspace \mathcal{E}_0 of Relevant States. b. Nonperturbative Calculation of the Transition Amplitude. c. Weak Coupling Case. Two-Photon Excitation Rate. d. Strong Coupling Limit. Two-Photon Rabi Oscillation. e. Higher-Order Multiphoton Transitions.	
	f. Limitations of the Foregoing Treatment	205
	COMPLEMENT A III—ANALYTIC PROPERTIES OF THE RESOLVENT	
Int	roduction	213
1. 2. 3.	Analyticity of the Resolvent outside the Real Axis Singularities on the Real Axis Unstable States and Poles of the Analytic Continuation of the	213 215
4	Resolvent	217
4.	Contour Integral and Corrections to the Exponential Decay	220
	Complement $B_{\rm III}$ —Nonperturbative Expressions for the Scattering Amplitudes of a Photon by an Atom	
Int	roduction	222
1.	Transition Amplitudes between Unperturbed States—a. Using the Resolvent. b. Transition Matrix. c. Application to Resonant Scattering. d. Inadequacy of Such an Approach	222

Contents	xi
----------	----

2.	Introducing Exact Asymptotic States—a. The Atom in the Absence of Free Photons. b. The Atom in the Presence of a Free Photon	229
3.	Transition Amplitude between Exact Asymptotic States— a. New Definition of the S-Matrix. b. New Expression for the	
	Transition Matrix. Physical Discussion	233
	COMPLEMENT C _{III} —DISCRETE STATE COUPLED TO A FINITE-WIDTH CONTINUUM: FROM THE WEISSKOPF – WIGNER EXPONENTIAL DECAY TO THE RABI OSCILLATION	
1. 2.	Introduction—Overview Description of the Model—a. Unperturbed States. b. Assumptions concerning the Coupling. c. Calculation of the Resolvent and of the Propagators. d. Fourier Transform of the Amplitude	239
3.	$U_b(\tau)$	240
4.	State with the Whole Continuum. c. The Function $\Delta_b(E)$ Graphical Discussion—a. Construction of the Curve $\mathcal{U}_b(E)$. b. Graphical Determination of the Maxima of $\mathcal{U}_b(E)$. Classifica-	244
5.	tion of the Various Regimes	246
6.	cay. b. Corrections to the Exponential Decay Intermediate Coupling. Critical Coupling—a. Power Expansion of $\mathcal{U}_b(E)$ near a Maximum. b. Physical Meaning of the Critical	249
	Coupling	251
7.	Strong Coupling	253
	IV	
	RADIATION CONSIDERED AS A RESERVOIR: MASTER EQUATION FOR THE PARTICLES	
A.	Introduction—Overview	257
B.	Derivation of the Master Equation for a Small System $\mathscr A$ Interacting with a Reservoir $\mathscr R$	262
	Equation Describing the Evolution of the Small System in the Interaction Representation	
	the interaction representation	262

xii Contents

	2. Assumptions Concerning the Reservoir—a. State of the Reservoir. b. One-Time and Two-Time Averages for the Reservoir Observables	263
	3. Perturbative Calculation of the Coarse-Grained Rate of	266
	Variation of the Small System	269
C.	Physical Content of the Master Equation	272
	1. Evolution of Populations	272
	2. Evolution of Coherences	274
D.	Discussion of the Approximations	278
	1. Order of Magnitude of the Evolution Time for \mathscr{A}	278
	2. Condition for Having Two Time Scales	278
	3. Validity Condition for the Perturbative Expansion	279
	4. Factorization of the Total Density Operator at Time t	280
	5. Summary	281
E.	Application to a Two-Level Atom Coupled to the Radiation Field 1. Evolution of Internal Degrees of Freedom—a. Master Equation Describing Spontaneous Emission for a Two-Level Atom. b. Additional Terms Describing the Absorption and Induced Emission of a Weak Broadband Radiation 2. Evolution of Atomic Velocities—a. Taking into Account	282
	the Translational Degrees of Freedom in the Master Equation. b. Fokker-Planck Equation for the Atomic Velocity Distribution Function. c. Evolutions of the Momentum Mean Value and Variance. d. Steady-State Distribution. Thermodynamic Equilibrium	289
	Complement A_{IV} —Fluctuations and Linear Response Application to Radiative Processes	
Int	roduction	302
1.	Statistical Functions and Physical Interpretation of the Master	

Contents	xiii
----------	------

2.	ceptibility. c. Polarization Energy and Dissipation. d. Physical Interpretation of the Level Shifts. e. Physical Interpretation of the Energy Exchanges Applications to Radiative Processes—a. Calculation of the Statistical Functions. b. Physical Discussion. c. Level Shifts due to the Fluctuations of the Radiation Field. d. Level Shifts due to Radiation Reaction. e. Energy Exchanges between the Atom and the Radiation	302
	Complement B_{IV} —Master Equation for a Damped Harmonic Oscillator	
1.	The Physical System	322
2.	Operator Form of the Master Equation	323
3.	Master Equation in the Basis of the Eigenstates of H_A — a. Evolution of the Populations. b. Evolution of a Few Average	226
A	Values	326
4.	Master Equation in a Coherent State Basis—a. Brief Review of Coherent States and the Representation P_N of the Density Operator. b. Evolution Equation for $P_N(\beta, \beta^*, t)$. c. Physical Discussion	329
	Complement C_{IV} —Quantum Langevin Equations for a Simple Physical System	
Int	roduction	334
1.	Review of the Classical Theory of Brownian Motion— a. Langevin Equation. b. Interpretation of the Coefficient D. Connection between Fluctuations and Dissipation. c. A Few	22.4
2.	Correlation Functions Heisenberg-Langevin Equations for a Damped Harmonic Oscillator—a. Coupled Heisenberg Equations. b. The Quantum Langevin Equation and Quantum Langevin Forces. c. Connection between Fluctuations and Dissipation. d. Mixed Two-Time Averages Involving Langevin Forces and Operators of \mathscr{A} . e. Rate of Variation of the Variances \mathscr{V}_N and \mathscr{V}_A . f. Generalization of Einstein's Relation. g. Calculation of Two-Time Averages for Operators of \mathscr{A} . Quantum Regression Theorem	334 340

xiv Contents

V OPTICAL BLOCH EQUATIONS

Inti	Introduction	
A.	Optical Bloch Equations for a Two-Level Atom 1. Description of the Incident Field 2. Approximation of Independent Rates of Variation 3. Rotating-Wave Approximation—a. Elimination of Antiresonant Terms. b. Time-Independent Form of the Optical Bloch Equations. c. Other Forms of the Optical Bloch Equations.	355 355 356 357
	4. Geometric Representation in Terms of a Fictitious Spin $\frac{1}{2}$	361
В.	Physical Discussion—Differences with Other Evolution Equa-	
	tions 1. Differences with Relaxation Equations. Couplings between Populations and Coherences 2. Differences with Hamiltonian Evolution Equations 3. Differences with Heisenberg-Langevin Equations	364 364 365
C.	First Application—Evolution of Atomic Average Values 1. Internal Degrees of Freedom—a. Transient Regime. b. Steady-State Regime. c. Energy Balance. Mean Number of Incident Photons Absorbed per Unit Time 2. External Degrees of Freedom. Mean Radiative Forces— a. Equation of Motion of the Center of the Atomic Wave Packet. b. The Two Types of Forces for an Atom Initially at Rest. c. Dissipative Force. Radiation Pressure. d. Reactive Force. Dipole Force	367 367 370
D.	Properties of the Light Emitted by the Atom 1. Photodetection Signals. One- and Two-Time Averages of the Emitting Dipole Moment—a. Connection between the Radiated Field and the Emitting Dipole Moment. b. Expression of Photodetection Signals	379 379
	2. Total Intensity of the Emitted Light—a. Proportionality to the Population of the Atomic Excited State. b. Coherent Scattering and Incoherent Scattering. c. Respective Contributions of Coherent and Incoherent Scattering to the Total Intensity Emitted in Steady State	382
	3 Spectral Distribution of the Emitted Light in Steady	302

Contents	xv
Contents	Α,

	State—a. Respective Contributions of Coherent and Incoherent Scattering. Elastic and Inelastic Spectra. b. Outline of the Calculation of the Inelastic Spectrum. c. Inelastic Spectrum in a Few Limiting Cases	384
	Complement A_v —Bloch–Langevin Equations and Quantum Regression Theorem	
Intr	roduction	388
1.	Coupled Heisenberg Equations for the Atom and the Field— a. Hamiltonian and Operator Basis for the System. b. Evolution Equations for the Atomic and Field Observables. c. Rotating- Wave Approximation. Change of Variables. d. Comparison with	
2.	the Harmonic Oscillator Case Derivation of the Heisenberg-Langevin Equations—a. Choice of the Normal Order. b. Contribution of the Source Field.	388
3.	c. Summary. Physical Discussion Properties of Langevin Forces—a. Commutation Relations between the Atomic Dipole Moment and the Free Field. b. Calculation of the Correlation Functions of Langevin Forces. c. Quantum Regression Theorem. d. Generalized Einstein	394
	Relations	398
	VI THE DRESSED ATOM APPROACH	
A.	Introduction: The Dressed Atom	407
В.	Energy Levels of the Dressed Atom 1. Model of the Laser Beam	410 410
	 Uncoupled States of the Atom + Laser Photons System Atom-Laser Photons Coupling—a. Interaction Hamiltonian. Resonant and Nonresonant Couplings. c. Local Periodicity of the Energy Diagram. d. Introduction of the Rabi 	412
	Frequency	413

xvi Contents

	4. Dressed States—a. Energy Levels and Wave Functions. b. Energy Diagram versus $\hbar\omega_L$
	5. Physical Effects Associated with Absorption and Induced Emission
C.	Resonance Fluorescence Interpreted as a Radiative Cascade of
•	the Dressed Atom
	1. The Relevant Time Scales
	2. Radiative Cascade in the Uncoupled Basis—a. Time Evolu-
	tion of the System. b. Photon Antibunching. c. Time Intervals between Two Successive Spontaneous Emissions
	3. Radiative Cascade in the Dressed State Basis—a. Allowed
	Transitions between Dressed States. b. Fluorescence Triplet.
	c. Time Correlations between Frequency Filtered Fluorescence
	Photons
D.	Master Equation for the Dressed Atom
	1. General Form of the Master Equation—a. Approximation of
	Independent Rates of Variation. b. Comparison with Optical
	Bloch Equations
	2. Master Equation in the Dressed State Basis in the Secular
	Limit—a. Advantages of the Coupled Basis in the Secular
	Limit. b. Evolution of Populations. c. Evolution of Coher-
	ences—Transfer of Coherences. d. Reduced Populations and
	Reduced Coherences
	3. Quasi-Steady State for the Radiative Cascade—a. Initial Den-
	sity Matrix. b. Transient Regime and Quasi-Steady State
E.	Discussion of a Few Applications
	1. Widths and Weights of the Various Components of the
	Fluorescence Triplet—a. Evolution of the Mean Dipole Mo-
	ment. b. Widths and Weights of the Sidebands. c. Structure
	of the Central Line
	2. Absorption Spectrum of a Weak Probe Beam—a. Physical
	Problem. b. Case Where the Two Lasers Are Coupled to the
	Same Transition. c. Probing on a Transition to a Third
	Level. The Autler-Townes Effect
	3. Photon Correlations—a. Calculation of the Photon-Correla-
	tion Signal. b. Physical Discussion. c. Generalization to a
	Three-Level System: Intermittent Fluorescence
	4. Dipole Forces—a. Energy Levels of the Dressed Atom in a

Contents	xvii
Contents	YAII

	Spatially Inhomogeneous Laser Wave. b. Interpretation of the Mean Dipole Force. c. Fluctuations of the Dipole Force	454
	Complement A_{VI} —The Dressed Atom in the Radio-Frequency Domain	
Intr	oduction	460
1.	Resonance Associated with a Level Crossing or Anti- crossing—a. Anticrossing for a Two-Level System. b. Higher-	461
2.	Order Anticrossing. c. Level Crossing. Coherence Resonance Spin $\frac{1}{2}$ Dressed by Radio-Frequency Photons—a. Description of the System. b. Interaction Hamiltonian between the Atom and	
3.	the Radio-Frequency Field. c. Preparation and Detection The Simple Case of Circularly Polarized Photons—a. Energy Diagram. b. Magnetic Resonance Interpreted as a Level-Anticrossing Resonance of the Dressed Atom. c. Dressed State	468
4.	Level-Crossing Resonances Linearly Polarized Radio-Frequency Photons—a. Survey of the New Effects. b. Bloch-Siegert Shift. c. The Odd Spectrum of Level-Anticrossing Resonances. d. The Even Spectrum of Level-Crossing Resonances. e. A Nonperturbative Calculation:	473
	The Landé Factor of the Dressed Atom. f. Qualitative Evolu- tion of the Energy Diagram at High Intensity	479
	Complement B_{VI} —Collisional Processes in the Presence of Laser Irradiation	
Inti	roduction	490
1.	Collisional Relaxation in the Absence of Laser Irradiation— a. Simplifying Assumptions. b. Master Equation Describing the	401
2.	Effect of Collisions on the Emitting Atom Collisional Relaxation in the Presence of Laser Irradiation— a. The Dressed Atom Approach. b. Evolution of Populations: Collisional Transfers between Dressed States. c. Evolution of	491
	Coherences. Collisional Damping and Collisional Shift. d. Explicit Form of the Master Equation in the Impact Limit	494

xviii Contents

3.	Collision-Induced Modifications of the Emission and Absorption of Light by the Atom. Collisional Redistribution—a. Taking into Account Spontaneous Emission. b. Reduced Steady-State Populations. c. Intensity of the Three Components of the Fluorescence Triplet. d. Physical Discussion in the Limit Ω_1	
4.	$ \delta_L \ll \tau_{\rm coll}^{-1}$	501 510
	, , , , , , , , , , , , , , , , , , , ,	
	Exercises	
1.	Calculation of the Radiative Lifetime of an Excited Atomic	
	Level. Comparison with the Damping Time of a Classical	
	Dipole Moment	515
2.	Spontaneous Emission of Photons by a Trapped Ion.	
	Lamb-Dicke Effect	518
3.	Rayleigh Scattering	524
4.	Thomson Scattering	527
5.	Resonant Scattering	530
6.	Optical Detection of a Level Crossing between Two Excited	
_	Atomic States	533
7.	Radiative Shift of an Atomic Level. Bethe Formula for the	
_	Lamb Shift	537
8.	Bremsstrahlung. Radiative Corrections to Elastic Scattering by	
_	a Potential	548
9.	Low-Frequency Bremsstrahlung. Nonperturbative Treatment	
4.0	of the Infrared Catastrophe	557
10.		5 < 4
	Its Interactions with the Radiation Field	564
	Magnetic Interactions between Spins	571
12.	Modification of an Atomic Magnetic Moment due to Its Cou-	500
	pling with Magnetic Field Vacuum Fluctuations	576
13.		500
	tion and Narrow-Band Excitation	580
14.		70 7
	Superradiant and Subradiant States	585
15.	Radiative Cascade of a Harmonic Oscillator	589
16.	Principle of the Detailed Balance	596

xix

17.	Equivalence between a Quantum Field in a Coherent State and an External Field
18.	Adiabatic Elimination of Coherences and Transformation of
9.	Optical Bloch Equations into Relaxation Equations Nonlinear Susceptibility for an Ensemble of Two-Level Atoms.
	A Few Applications
20.	Absorption of a Probe Beam by Atoms Interacting with an
	Intense Beam. Application to Saturated Absorption
	APPENDIX
	QUANTUM ELECTRODYNAMICS IN THE COULOME GAUGE—SUMMARY OF THE ESSENTIAL RESULTS
l.	Description of the Electromagnetic Field—a. Electric Field E and Magnetic Field B. b. Vector Potential A and Scalar Potential U. c. Coulomb Gauge. d. Normal Variables. e. Principle of Canonical Quantization in the Coulomb Gauge. f. Quantum Fields in the Coulomb Gauge
). }.	Particles
4. 5.	State Space
Ref	erences
Ind	ex